• The solubility product constant of $BaSO_4$ is 1.1×10^{-10} M². What is the solubility of $BaSO_4$ in g L⁻¹?

The dissolution equilibrium is: $BaSO_4(s) \iff Ba^{2+}(aq) + SO_4^{2-}(aq)$. As equal amounts of cations and anions are produced, the expression for the solubility product is:

 $K_{\rm sp} = [{\rm Ba}^{2+}({\rm aq})][{\rm SO}_4^{2-}({\rm aq})] = (S) \times (S) = S^2$ where S is the molar solubility.

As $S^2 = 1.1 \times 10^{-10}$, the molar solubility = $S = 1.05 \times 10^{-5}$ M.

The formula mass of BaSO₄ is:

 $(137.34 (Ba) + 32.07 (S) + 4 \times 16.00 (O)) \text{ g mol}^{-1} = 228.41 \text{ g mol}^{-1}$

Hence, the solubility is $(1.05 \times 10^{-5} \text{ M}) \times (228.41 \text{ g mol}^{-1}) = 2.4 \times 10^{-3} \text{ g L}^{-1}$

ANSWER: $2.4 \times 10^{-3} \text{ g L}^{-1}$

• The solubility product constant of Ag_2CrO_4 is 2.6×10^{-12} M³. What is the molar solubility of Ag_2CrO_4 in water?

5

Marks

3

The dissolution equilibrium is: $Ag_2CrO_4(s) \leftrightarrows 2Ag^+(aq) + CrO_4^{2-}(aq)$. As two mol of cation is produced for every one mol of anion, the expression for the solubility product is:

 $K_{sp} = [Ag^{+}(aq)]^{2}[CrO_{4}^{2-}(aq)] = (2S)^{2} \times (S) = 4S^{3}$ where S is the molar solubility.

As $4S^3 = 2.6 \times 10^{-12} \text{ M}^3$, the molar solubility = $S = 8.7 \times 10^{-5} \text{ M}$.

ANSWER: **8.7** × 10⁻⁵ M

What is the molar solubility of Ag₂CrO₄ in a solution of 0.10 M AgNO₃?

As AgNO₃ is very soluble, $[Ag^+(aq)] = 0.10$ M.

If S is the solubility,
$$K_{sp} = [Ag^+(aq)][CrO_4^{2-}(aq)] = (0.10)^2 \times S = 2.6 \times 10^{-12}$$
.

Hence, $S = 2.6 \times 10^{-10}$ M

ANSWER: 2.6 × 10⁻¹⁰ M