CHEM1102 2004-J-6 June 2004

• Magnesium hydroxide, Mg(OH)₂, is used as treatment for excess acidity in the stomach. Calculate the pH of a solution that is in equilibrium with Mg(OH)₂. The solubility product constant, K_{sp} of Mg(OH)₂ is 7.1×10^{-12} M².

Marks 6

The dissolution equilibrium is: $Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2OH^-(aq)$. As two mol of anion is produced for every one mol of cations, the expression for the solubility product is:

$$K_{\rm sp} = [\mathrm{Mg}^{2+}(\mathrm{aq})][\mathrm{OH}^{-}(\mathrm{aq})]^2 = (S) \times (2S)^2 = 4S^3$$
 where S is the molar solubility

Hence,
$$[OH^{-}(aq)] = 2S = 2 \times \sqrt[3]{\frac{7.1 \times 10^{-12}}{4}} = 2.4 \times 10^{-4} \text{ M}.$$

The pOH =
$$-\log_{10}[OH^{-}(aq)] = -\log_{10}[2.4 \times 10^{-4}] = 3.6$$

As
$$pH + pOH = 14.0$$
, the $pH = 14.0 - 3.6 = 10.4$

ANSWER: 10.4

Determine whether 2.0 g of Mg(OH)₂ will dissolve in 1.0 L of a solution buffered to a pH of 7.00.

At pH = 7.00, pOH =
$$14.00 - 7.00 = 7.00$$
 and hence $[OH^{-}(aq)] = 10^{-7}$ M.

The formula mass of Mg(OH)2 is:

formula mass =
$$(24.31 \text{ (Mg)} + 2 \times (16.00 \text{ (O)} + 1.008 \text{ (H)}) \text{ g mol}^1$$

= 58.326 g mol^1

Therefore 2.0 g contains:

number of moles =
$$\frac{\text{mass}}{\text{formula mass}} = \frac{2.0 \,\text{g}}{58.326 \,\text{g mol}^{-1}} = 0.034 \,\text{mol}$$

As each mole of $Mg(OH)_2$ generates 1 mole of Mg^{2+} , if all of the $Mg(OH)_2$ dissolves in 1.0 L of solution then $[Mg^{2+}(aq)] = 0.034$ M. The buffer removes the OH^- produced so that $[OH^-(aq)] = 10^{-7}$ M.

The ionic product is then:

$$Q = [Mg^{2+}(aq)][OH^{-}(aq)]^{2} = (0.034) \times (10^{-7})^{2} = 3.4 \times 10^{-16}$$

As Q is much smaller than K_{sp} , all of the solid will dissolve.

ANSWER: YES/NO