CHEM1102	2005-J-2	June 2005
centred cubic, a body	als crystallise in one of three cubic for y-centred cubic or a simple cubic uni- larities between these different crysta	it cell. Explain the main
All three are based	on a cubic unit cell:	
 stacked directly other cubes, each 1 atom. The atom. The atom. The body centre giving a total of diagonal. The face centre centre of each f the face centres cell. The cell co along the face determent dense. In a face centre 	ic form has atoms on each corner s y one on top of the other. As the 8 a ch contributes $1/8$ to the cell so tha oms touch along the edges of the cu red cubic form has at an additional f 2 atoms in the cell. The atoms tou ed cubic form has atoms on each co face (with no atom at the centre of the s are shared with two other cubes a ntains $8 \times 1/8$ (corner) + $6 \times 1/2$ (fa liagonals. ed cubic form is the only close pack ed cubic structure, 74% of the spac 58% is occupied. In a simple cubic	atoms are shared with eight at the cell contains $8 \times 1/8 =$ ube. I atom in the cube centre, uch along the cube orner and atoms at the the cube). The atoms on and so contribute 1/2 to the ace) = 4. The atoms touch ked structure and is the ce is occupied. In a body
	hydroxyapatite, Ca ₅ (PO ₄) ₃ OH. Why? Use chemical equations where app	5
	ssolves in water according to the equations $= 5Ca^{2+}(aq) + 3PO_4^{-3-}(aq) + 0$	
	dium, the equilibrium lies to the le O4 ³ - and OH ⁻ to form the conjugate	
	his shifts the equilibrium to the rig	

Fluoridation can replace OH^- forming $Ca_5(PO_4)_3F(s)$. This is less soluble than hydroxyapatite - it does not react with H^+ to the same extent as OH^- .