Marks • Calcium oxalate is a major constituent of kidney stones. Calculate the solubility 2 product constant for calcium oxalate given that a saturated solution of the salt can be made by dissolving 0.0061 g of $CaC_2O_4 \cdot H_2O(s)$ in 1.0 L of water. The molar mass of CaC₂O₄·H₂O is: $(40.08(Ca) + 2 \times 12.01(C) + 5 \times 16.00(O) + 2 \times 1.008(H))$ g mol⁻¹ = 146.116 g mol⁻¹ Hence, 0.0061 g corresponds to $\frac{0.0061 \text{ g}}{146.116 \text{ g mol}^{-1}} = 4.2 \times 10^{-5} \text{ mol}$. As this amount dissolves in 1.0 L, the molar solubility = $S = 4.2 \times 10^{-5}$ M. The dissolution equilibrium is: $CaC_2O_4 \cdot H_2O(s) \rightarrow Ca^{2+}(aq) + C_2O_4^{2-}(aq) + H_2O(l).$ As one mol of cation and one mol of anion is produced, the solubility product is: $K_{sp} = [Ca^{2+}(aq)][C_2O_4^{2-}(aq)] = (S)(S) = S^2 = (4.2 \times 10^{-5})^2 = 1.7 \times 10^{-9}$ Answer: 1.7×10^{-9} 3 A sample of 2.0 mg of Cu(OH)₂ is added to 1.0 L of a solution buffered at a pH of 8.00. Will all of the Cu(OH)₂ dissolve? Show all working. (The K_{sp} of Cu(OH)₂ is 4.8×10^{-20} M³.) As pH + pOH = 14.00, pOH = 14.00 - 8.00 = 6.00. Hence, [OH⁻(aq)] = 10⁻⁶ M. The dissolution equilibrium is: $Cu(OH)_2(s) \rightarrow Cu^{2+}(aq) + 2OH^{-}(aq)$ Hence, if S is the molar solubility, $K_{sp} = [Cu^{2+}(aq)][OH^{-}(aq)]^{2} = S \times [OH^{-}(aq)]^{2}$. As $K_{\rm sp} = 4.8 \times 10^{-20}$, $S = \frac{4.8 \times 10^{-20}}{(10^{-6})^2} = 4.8 \times 10^{-8} \,\mathrm{M}$ The molar mass of Cu(OH)₂ is (63.55 (Cu) + $2 \times (16.00 \text{ (O)} + 1.008 \text{ (O)}) \text{ g mol}^1 =$ 97.566 g mol⁻¹.

The solubility in g L⁻¹ is therefore $(4.8 \times 10^{-8}) \times 97.566 = 4.7 \times 10^{-6}$.

Hence, only 4.7×10^{-3} mg will dissolve.

Answer: NO