Marks

4

• Magnesium hydroxide, Mg(OH)₂, is used as treatment for excess acidity in the stomach. Its solubility product constant, K_{sp} , is 7.1×10^{-12} M³. Calculate the pH of a solution that is in equilibrium with Mg(OH)₂(s).

The dissolution equilibrium is: $Mg(OH)_2(s) \leftrightarrows Mg^{2+}(aq) + OH^{-}(aq)$

Hence, $K_{sp} = [Mg^{2+}(aq)][OH^{-}(aq)]^{2}$

If
$$[Mg^{2+}(aq)] = x$$
 then $[OH^{-}(aq)] = 2x$ and $K_{sp} = (x)(2x)^{2} = 4x^{3}$

As $K_{sp} = 7.1 \times 10^{-12}$, $x = 1.2 \times 10^{-4}$ M and so $[OH^{-}(aq)] = 2.4 \times 10^{-4}$ M

As
$$pH + pOH = 14.0$$
 and $pOH = -log[OH^{-}(aq)] = -log(2.4 \times 10^{-4}) = 3.6$:

pH = 14.0 - 3.6 = 10.4

Answer: **pH** = **10.4**

Determine whether $3.0 \text{ g of } Mg(OH)_2$ will dissolve in 1.0 L of a solution buffered to a pH of 8.00.

If pH = 8.00 then pOH = 14.00 - 8.00 = 6.00. As pOH = -log[OH⁻(aq)]:

 $[OH^{-}(aq)] = 1.00 \times 10^{-6}.$

As
$$K_{sp} = [Mg^{2+}(aq)][OH^{-}(aq)]^2 = 7.1 \times 10^{-12}$$
, the $[Mg^{2+}(aq)]$ is:

$$[Mg^{2+}(aq)] = \frac{K_{sp}}{[OH^{-}(aq)]^{2}} = \frac{7.1 \times 10^{-12}}{(1.00 \times 10^{-6})^{2}} = 7.1 M$$

As 1 mol of Mg(OH)₂(s) dissolves to give 1 mol of [Mg²⁺(aq)], this is also the number of moles of Mg(OH)₂(s) which dissolves.

The molar mass of Mg(OH)₂ is (24.31 (Mg)) + 2×(16.00 (O) + 1.008 (H)) = 58.326

The mass of Mg(OH)₂ which can dissolve is therefore $7.1 \times 58.326 = 410$ g.

YES / NO