• The following initial rate data have been obtained for the gas phase reaction of nitrogen dioxide, $NO_2(g)$, and ozone, $O_3(g)$, at 300 K.

$2\mathrm{NO}_2(\mathrm{g}) + \mathrm{O}_3(\mathrm{g}) \rightarrow \mathrm{N}_2\mathrm{O}_5(\mathrm{g}) + \mathrm{O}_2(\mathrm{g})$		
[NO ₂ (g)] M	[O ₃ (g)] M	Rate M s ⁻¹
0.65	0.80	$2.61 imes 10^4$
1.10	0.80	$4.40 imes 10^4$
1.10	1.60	$8.80 imes 10^4$

 $2NO_2(q) + O_2(q) \rightarrow N_2O_2(q) + O_2(q)$

What is the order of this reaction with respect to each reagent?

Between the first and second experiments, $[O_3(g)]$ is kept constant and $[NO_2(g)]$ increases by about 1.7. This leads to the rate also increasing by about 1.7. The reaction is therefore first order with respect to [NO₂(g)].

Between the second and third experiments, $[NO_2(g)]$ is kept constant and $[O_3(g)]$ is doubled. This also leads to a doubling of the rate. The reaction is therefore also first order with respect to $[O_3(g)]$.

rate = $k[NO_2(g)][O_3(g)]$

What is the rate constant of the reaction?

Using the rate law rate = $k[NO_2(g)][O_3(g)]$, k can be worked out using any of the three experiments. For example, using the first experiment:

rate = 2.61×10^4 = k[NO₂(g)][O₃(g)] = k × (0.65) × (0.80)

Hence k = $\frac{2.61 \times 10^4}{(0.65)(0.80)} = 5.0 \times 10^4$

The units of k are obtained by balancing those in the rate law: the rate has units of M s⁻¹ and the concentrations both have units of M. Hence:

Units of k =
$$\frac{M s^{-1}}{(M)(M)} = M^{-1} s^{-1}$$

Answer: $5.0 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$