
• Compounds of d-block elements are frequently paramagnetic. Using the box notation to represent atomic orbitals, account for this property in compounds of Cu^{2+} .

As Cu is in group 11, it has 11 valence electrons. Cu^{2+} therefore has (11-2)=9. These occupy the five 3d orbitals:

There is an unpaired electron and so Cu²⁺ is paramagnetic.

• Complete the following table.

Formula	Oxidation state of transition metal	Coordination number of transition metal	Number of d- electrons in the transition metal	Species formed upon dissolving in water
Na ₂ [CoCl ₄]	+2	4	7	Na ⁺ , [CoCl ₄] ²⁻
[Ni(NH ₃) ₅ (H ₂ O)]SO ₄	+2	6	8	$[Ni(NH_3)_5(H_2O)]^{2+},$ SO_4^{2-}
[Cr(en) ₃]Br ₃	+3	6	3	[Cr(en) ₃] ³⁺ , Br

 $en = ethylenediamine = NH_2CH_2CH_2NH_2$

6

2