• Solution A consists of a 0.25 M aqueous solution of hydrazoic acid, HN₃, at 25 °C. Calculate the pH of Solution A. The pK_a of HN₃ is 4.63.

As $pK_a = -log(K_a) = 4.63$, $K_a = 10^{-4.63} = 2.34 \times 10^{-5}$. The reaction table is:

	HN ₃ (aq)	~	H ⁺ (aq)	N ₃ (aq)
t = 0	0.25		0	0
change	-X		+ x	+x
equilibrium	0.25 - x		X	X

Hence,
$$K_a = \frac{[H^+(aq)][N_3^-(aq)]}{[HN_3]} = \frac{(x)(x)}{(0.25-x)} = \frac{x^2}{(0.25-x)} = 2.34 \times 10^{-5}$$

As K_a is very small, very little HN₃ dissociates and x is tiny so $(0.25 - x) \sim 0.25$

Hence,
$$\frac{x^2}{(0.25)} = 2.34 \times 10^{-5}$$
 or $x = [H^+(aq)] = 2.42 \times 10^{-3} M$

As $pH = -log[H^+(aq)]$:

 $pH = -log(2.42 \times 10^{-3}) = 2.62$

Answer: 2.62

(ANSWER CONTINUES ON THE NEXT PAGE)

At 25 °C, 1.00 L of Solution B consists of 13.0 g of sodium azide (NaN_3) dissolved in water. Calculate the pH of Solution B.

The relevant reaction is now: $N_3(aq) + H_2O(l) \iff HN_3(aq) + OH(aq)$

As N_3 is the conjugate base of HN₃, the equilibrium constant for this reaction is K_b where $pK_a + pK_b = 14.00$.

Hence, using pK_a from above:

 $pK_b = 14.00 - 4.63 = 9.37$ or $K_b = 10^{-9.37} = 4.27 \times 10^{-10}$.

The molar mass of NaN₃ is $(22.99 (Na)) + (3 \times 14.01 (N)) = 65.02$. The number of moles in 13.0 g is therefore:

number of moles = $\frac{\text{mass}}{\text{molar mass}} = \frac{13.0}{65.02} = 0.200 \text{ mol}$

As this is dissolved in 1.00 L, $[N_3(aq)] = \frac{\text{number of moles}}{\text{volume}} = \frac{0.200}{1.00} = 0.200 \text{ M}$

The relevant reaction table is now:

	N ₃ -(aq)	H ₂ O(l)	_	HN ₃ (aq)	OH ⁻ (aq)
t = 0	0.200			0	0
change	-X			+ x	+ x
equilibrium	0.200 - x			X	X

The equilibrium constant $K_b = \frac{[NH_3(aq)][OH^-(aq)]}{[N_3^-(aq)]} = \frac{(x)(x)}{(0.200-x)} = \frac{x^2}{(0.200-x)}$

 K_b is small so the amount of $N_3^-(aq)$ which is protonated is tiny and hence $0.200-x\sim 0.200.$

Hence, $\frac{x^2}{(0.200)} = 4.27 \times 10^{-10}$ or $x = [OH^{-}(aq)] = 9.24 \times 10^{-6} M$ As $pOH = -log[OH(aq)] = -log(9.24 \times 10^{-6}) = 5.03$ As pH + pOH = 14: pH = 14 - 5.03 = 8.97

Answer: 8.97

2006-N-5

Solution B (1.00 L) is poured into Solution A (1.00 L) and allowed to equilibrate at 25 $^{\circ}$ C to give Solution C. Calculate the pH of Solution C.

Solution C is a buffer system as it contains both a weak acid (HN_3) and its conjugate base $(N_3(aq))$. The pH can be obtained from the Henderson-Hasselbalch equation:

$$pH = pK_a + log \frac{[A^{-}(aq)]}{[HA(aq)]}$$

Using $pK_a = 4.63$, $[HA(aq)] = [HN_3(aq)] = 0.25$ M and $[A^-(aq)] = [N_3^-(aq)] = 0.200$ M:

$$pH = (4.63) + \log \frac{(0.200)}{(0.25)} = 4.53$$

Answer: 4.53

If you wanted to adjust the pH of Solution C to be exactly equal to 4.00, which component in the mixture would you need to increase in concentration? To lower the pH, the acid concentration (HN₃) is increased