• The K_{sp} of Al(OH)₃ is 1.0×10^{-33} M⁴. What is the solubility of Al(OH)₃ in g L⁻¹?

The solubility equilibrium is:

 $Al(OH)_3(s) \iff Al^{3+}(aq) + 3OH^{-}(aq)$

If the molar solubility = S then $[Al^{3+}(aq)] = S$ and $[OH^{-}(aq)] = 3S$. Hence:

$$K_{sp} = [Al^{3+}(aq)][OH^{-}(aq)] = (S)(3S)^{3} = 27S^{4} = 1.0 \times 10^{-33}$$

Hence, S =
$$\sqrt[4]{\frac{1.0 \times 10^{-33}}{27}} = 2.5 \times 10^{-9} \text{ M}$$

The formula mass of Al(OH)₃ is (26.98 (Al)) + 3×(16.00 (O) + 1.008 (H)) = 78.004

As mass = number of moles \times formula mass, the solubility in g L⁻¹ is:

solubility = $(2.5 \times 10^{-9}) \times (78.004) = 1.9 \times 10^{-7} \text{ g L}^{-1}$

Answer: $1.9 \times 10^{-7} \text{ g L}^{-1}$

What is the solubility of $Al(OH)_3$ in g L⁻¹ at pH 4.00?

As pH + pOH = 14.00, pOH = 14.00 - 4.00 = 10.00.

As $pOH = -log_{10}([OH^{-}(aq)], [OH^{-}(aq)] = 10^{-10.00} M.$

From above, $K_{sp} = [Al^{3+}(aq)][OH^{-}(aq)]$. If the molar solubility is S then:

 $K_{sp} = (S) \times (10^{-10.00})^3 = 1.0 \times 10^{-33}$ and so $S = 1.0 \times 10^{-3}$ M

Converting the molar solubility into g L^{-1} gives:

solubility = $(1.0 \times 10^{-3}) \times (78.004) = 0.078 \text{ g L}^{-1}$

Answer: **0.078 g L**⁻¹