• Rank H ₂ O(l), H ₂ S(aq) and HF(aq) in order of their Brønsted acid strengths. Explain your reasoning.	Marks 2
$HF(aq) > H_2S(aq) > H_2O(l)$	l
The H–F bond is more polar than H–O so is easier to break HF into H^+ and F^- than to break H_2O into H^+ and OH^- . Hence HF is stronger acid than H_2O .	l
S is much larger atom than O, so the H–S bond is much longer and weaker than H–O; hence H ₂ O is weaker acid than H ₂ S.	l
HF is stronger than H_2S because the small F^- ion bonds more strongly to the water molecules than does the larger HS ⁻ ion.	l
• Buffer systems are frequently used in chemistry. Briefly describe a buffer system and how it functions? Use equations where appropriate.	4
Buffer systems resist changes in pH. They consist of a weak acid (HA) and its conjugate base (A^{-}) in high concentrations.	
If \mathbf{H}^+ is added, it is consumed by the \mathbf{A}^- ions:	1
$H^+(aq) + A^-(aq) \rightarrow HA(aq)$	l
If OH ⁻ is added, it is consumed by the acid present:	1
$OH^{-}(aq) + HA(aq) \rightarrow H_2O + A^{-}(aq)$	l
If the amount of H^+ or OH^- added is too great, there may be insufficient HA or A^- present and so the buffer may not work.	
What ratio of concentrations of acetic acid to sodium acetate would you require to prepare a buffer with pH = 4.00? The K_a of acetic acid is 1.8×10^{-5} M.	
The pH of a buffer can be calculated using the Henderson-Hasselbalch equation can be used:	l
$\mathbf{pH} = \mathbf{pK}_{\mathbf{a}} + \log_{10} \left(\frac{[\mathbf{base}]}{[\mathbf{acid}]} \right)$	I
For acetic acid, $pK_a = -log_{10}K_a = -log_{10}(1.8 \times 10^{-5}) = 4.74$. Thus to achieve pH 4.00, the ratio of base to acid must be:	L
$4.00 = 4.74 + \log_{10} \left(\frac{[CH_3COO^-]}{[CH_3COOH]} \right)$	l
$\log_{10}\left(\frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]}\right) = -0.74 \text{ or } \frac{[CH_{3}COOH]}{[CH_{3}COO^{-}]} = 5.6$	
Answer: $CH_3COOH : CH_3COO^- = 5.6$	1