CHEM1102 2007-N-4 November 2007

• Barium sulfate is used as a contrast agent for X-ray images of intestines. What is the solubility product constant, $K_{\rm sp}$, for BaSO₄, given that a maximum of 1.167×10^{-8} g will dissolve in 500 mL of water?

Marks 4

The formula mass of BaSO₄ is 137.34 (Ba) + 32.07 (S) + $4 \times 16.00 = 233.41$ g mol⁻¹. 1.167×10^{-8} g therefore corresponds to:

number of moles =
$$\frac{mass}{formula \, mass} = \frac{1.167 \times 10^{-8}}{233.41} = 5.000 \times 10^{-11}$$

Barium sulfate dissolves according to the equilibrium:

BaSO₄(s)
$$\implies$$
 Ba²⁺(aq) + SO₄²⁻(aq) $K_{sp} = [Ba^{2+}(aq)][SO_4^{2-}(aq)]$

As 5.000×10^{-11} mol dissolves in 500 mL,

$$[Ba^{2+}(aq)] = [SO_4^{2-}(aq)] = \frac{\text{number of moles}}{\text{volume}} = \frac{5.000 \times 10^{-11}}{0.500} = 1.00 \times 10^{-10} \text{ M}$$

Hence,

$$K_{\rm sp} = (1.00 \times 10^{-10}) \times (1.00 \times 10^{-10}) = 1.00 \times 10^{-20}$$

Answer: 1.00×10^{-20}

What advantage would there be in administering BaSO₄ as a slurry that also contains 0.5 M Na₂SO₄?

As indicated by the very small solubility above, the equilibrium

BaSO₄(s)
$$\implies$$
 Ba²⁺(aq) + SO₄²⁻(aq)

lies far to the left. Adding more $SO_4^{2-}(aq)$ ions pushes it further to the left.

This acts to remove Ba²⁺(aq) ions from solution. This is advantageous as barium ions are highly toxic.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.