• Hydrogenation of nitric oxide to nitrogen and water is a potential means of reducing smog-forming NO_x gases:

Marks 3

$$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

The initial rates of this reaction at constant temperature were determined at the following combination of initial pressures (P_0).

Run	$P_0\left(\mathrm{H}_2\right)/\mathrm{kPa}$	P_0 (NO) / kPa	Rate / kPa s ⁻¹
1	53.3	40.0	0.137
2	53.3	20.3	0.033
3	38.5	53.3	0.213
4	19.6	53.3	0.105

Derive an expression for the rate law for this reaction.

Between Run 1 and 2, P_0 (H₂) is constant and P_0 (NO) is halved. This causes the rate to be reduced by a factor of four. The rate is second order with respect to NO.

Between Run 3 and 4, P_0 (H₂) is halved and P_0 (NO) is constant. This causes the rate to be reduced by a factor of two. The rate is first order with respect to H₂.

Overall,

rate =
$$k \times P(H_2) \times P^2(NO)$$

Answer: $\mathbf{rate} = k \times P(\mathbf{H}_2) \times P^2(\mathbf{NO})$

Calculate the value of the rate constant.

Using Run 1, rate = 0.137 kPa s⁻¹ when $P(H_2) = 53.3$ kPa and P(NO) = 40.0 kPa:

$$0.137 \text{ kPa s}^{-1} = k \times 53.3 \text{ kPa} \times (40.0 \text{ kPa})^2$$

$$k = 1.61 \times 10^{-6} \text{ kPa}^{-2} \text{ s}^{-1}$$

Answer: $k = 1.61 \times 10^{-6} \text{ kPa}^{-2} \text{ s}^{-1}$

What is the order of the reaction?

 $1 (H_2) + 2 (NO) = 3 (third order)$