• What is a chelate ligand?	Mark 4
Draw all possible isomers of $[CoCl_2(en)_2]$. en = ethylenediamine = $NH_2CH_2CH_2N$	Н.
Draw an possible isomers of [coci2(cn/2]. cn = carylenearannine = 14112c112c11214	112
• Explain briefly why the $[\text{Fe}(\text{H}_2\text{O})_6]^{3+}$ cation has a K_a of 6×10^{-3} M, whilst the $[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$ cation has a K_a of 4×10^{-9} M.	2