3

• Hydrogenation of nitric oxide to nitrogen and water is a potential means of reducing smog-forming NO_x gases:

$$2NO(g) \ + \ 2H_2(g) \ \to \ N_2(g) \ + \ 2H_2O(g)$$

The initial rates of this reaction at constant temperature were determined at the following combination of initial pressures (P_0) .

Run	$P_0\left(\mathrm{H}_2\right)/\mathrm{kPa}$	P_0 (NO) / kPa	Rate / kPa s ⁻¹
1	53.3	40.0	0.137
2	53.3	20.3	0.033
3	38.5	53.3	0.213
4	19.6	53.3	0.105

Derive an expression for the rate law for this reaction.				
Answer:				
Calculate the value of the rate constant.				
Calculate the value of the fate const	tant.			
Carearate the varie of the rate const	ant.			
Carearate the varie of the rate const	ant.			
Carearate the varie of the rate const	ant.			
Carediace the variet of the rate const	ant.			
Carearate the varie of the rate const	ant.			
Carediace the variet of the rate const	ant.			
Carediace the variet of the rate const	ant.			
Carediace the variet of the rate const	ant.			
Carediace the variet of the rate const				
What is the order of the reaction?	Answer:			