• Complete the following table. (en = ethylenediamine = $NH_2CH_2CH_2NH_2$) Marks 9 | Formula | (NH ₄) ₂ [CoCl ₄] | [Cr(NH ₃) ₅ (H ₂ O)]Cl ₃ | cis-[PtCl ₂ (en) ₂] | |---|---|--|---| | Oxidation
state of
transition
metal ion | +2 (II) | +3 (III) | +2 (II) | | Coordination
number of
transition
metal ion | 4 | 6 | 6
(2 × Cl and 4 × N
from 2en) | | Number of <i>d</i> -electrons in the transition metal ion | 7
(Co is in Group 9 so
Co ²⁺ has 9 – 2= 7) | 3
(Cr is in Group 6 so
Co ²⁺ has 6 – 3= 3) | 8
(Pt is in Group 10 so
Pt ²⁺ has 10 – 2= 8) | | Charge of the complex ion | -2
[CoCl ₄] ²⁻ | +3
[Cr(NH ₃) ₅ (OH ₂)] ³⁺ | 0
[PtCl ₂ (en)] | | Geometry
of the
complex ion | tetrahedral | octahedral | octahedral | | List all the ligand donor atoms | 4 × Cl⁻ | $5 \times N$ and $1 \times O$ | 2 × Cl and 4 × N |