Marks A solution is prepared that is 0.10 M in potassium bromide and 0.10 M in potassium 4 chromate. A concentrated aqueous solution of silver nitrate is added with stirring. What is the concentration of $Ag^+(aq)$ ions when silver bromide first appears? $K_{\rm sp}$ of AgBr = 5.0 × 10⁻¹³ When precipitation occurs, the following equilibrium is established and $[Ag^{+}(aq)]$ and $[Br^{-}(aq)]$ are controlled by the value of the solubility product: $AgBr(s) \iff Ag^+(aq) + Br^-(aq)$ $K_{\rm sp} = [Ag^+(aq)][Br^-(aq)] = 5.0 \times 10^{-13}$ As the solution is 0.10 M in KBr, [Br'(aq)] = 0.10 M: $[Ag^{+}(aq)] \times (0.10) = 5.0 \times 10^{-13}$ so $[Ag^{+}(aq)] = 5.0 \times 10^{-12} M$ Answer: 5.0×10^{-12} M What is the concentration of $Ag^+(aq)$ ions when silver chromate first appears? $K_{\rm sp}$ of Ag₂CrO₄ = 2.6 × 10⁻¹² When precipitation occurs, the following equilibrium is established and $[Ag^{+}(aq)]$ and $[CrO_{4}^{2}(aq)]$ are controlled by the value of the solubility product: $Ag_2CrO_4 \implies 2Ag^+(aq) + CrO_4^{2-}(aq)$ $K_{sp} = [Ag^+(aq)]^2[CrO_4^{2-}(aq)] = 2.6 \times 10^{-12}$ As the solution is 0.10 M in K_2CrO_4 , $[CrO_4^{2-}(aq)] = 0.10$ M: $[Ag^{+}(aq)]^{2} \times (0.10) = 2.6 \times 10^{-12}$ so $[Ag^{+}(aq)] = 5.1 \times 10^{-6} M$ Answer: 5.1×10^{-6} M What is the concentration of Br(aq) ions when silver chromate first appears? [Br (aq)] is control by the K_{sp} for AgBr and so when [Ag⁺(aq)] = 5.1 × 10⁻⁶ M, $K_{sp} = [Ag^{+}(aq)][Br^{-}(aq)] = 5.0 \times 10^{-13}$ $(5.1 \times 10^{-6}) \times [Br'(aq)] = 5.0 \times 10^{-13}$ so $[Br'(aq)] = 9.8 \times 10^{-8} M$ Answer: 9.8×10^{-8} M