22/06(a)

• Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water according to the following equation.

 $2NO(g) \ + \ H_2(g) \ \to \ N_2O(g) \ + \ H_2O(g)$

The following rate data were collected at 225 $^{\circ}$ C.

Experiment	[NO] ₀ (M)	$[H_2]_0(M)$	Initial rate (d[NO]/dt, M s ⁻¹)
1	6.4×10^{-3}	2.2×10^{-3}	2.6×10^{-5}
2	1.3×10^{-2}	2.2×10^{-3}	1.0×10^{-4}
3	6.4×10^{-3}	4.4×10^{-3}	5.1×10^{-5}

Experiment	$[NO]_0(M)$	$[H_2]_0$ (M)	Initial rate (d[NO]/dt, M s ⁻¹)
1	6.4×10^{-3}	2.2×10^{-3}	2.6×10^{-5}
2	1.3×10^{-2}	2.2×10^{-3}	1.0×10^{-4}
3	6.4×10^{-3}	4.4×10^{-3}	5.1×10^{-5}
Determine t	the rate law for the rea	ction.	
Calculate th	ne value of the rate con	astant at 225 °C.	
		Answer:	
Calculate th	ne rate of appearance o	of N ₂ O when [NO] = [$[H_2] = 6.6 \times 10^{-3} \text{ M}.$
		Answer:	
Suggest a p Explain you		r the reaction based o	n the form of the rate law.