CHEM1102 2009-J-2 June 2009

• Explain in terms of their electronic configurations **and** ionisation energies why the halogens (Group 17) are powerful *oxidising* agents.

Marks 2

Oxidising agents are themselves reduced (i.e. they gain electrons).

The electronic configuration of the halogens (Group 17) is np^5 . They are small atoms (atomic size decreases across a period as the nuclear charge increases). In each period, the halogen is the element with the highest number of protons in the nucleus that also has an incomplete shell.

As a result, they will readily gain a single electron to form the X⁻ ion.

Similarly, the high nuclear charge and small size means that they have high ionisation energies. Hence halogens are poor reducing agents.

• Compounds of d-block elements are frequently paramagnetic. Using the box notation to represent atomic orbitals, account for this property in compounds of Co^{2+} .

2

A cobalt atom has 9 valence electrons: it is in Group 9 of the Periodic Table. A Co^{2+} cation has lost 2 electrons so has (9-2)=7 valence electrons. The configuration of Co^{2+} is $3d^{7}$. These occupy the five *d*-orbitals to maximize the number of unpaired electrons (to minimize the electron-electron repulsion):

Paramagnetism arises as a result of the presence of 1 or more unpaired electrons. Co²⁺ has 3 unpaired electrons and so is paramagnetic.