• Solution A consists of a 0.020 M aqueous solution of propionic acid, C₃H₆O₂, at 25 °C. Calculate the pH of Solution A. The p*K*_a of propionic acid is 4.87.

As $C_3H_6O_2$ is a weak acid, $[H^+]$ must be calculated by considering the equilibrium:

	$C_3H_6O_2$	+	$C_3H_5O_2$	\mathbf{H}^{+}
initial	0.020		0	0
change	- <i>x</i>		+x	+x
final	0.020 - x		x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm C_3H_5O_2}^-][{\rm H^+}]}{[{\rm C_3H_6O_2}]} = \frac{x^2}{(0.020 - x)}$$

As $pK_a = 4.87$, $K_a = 10^{-4.87}$. K_a is very small so $0.020 - x \sim 0.020$ and hence:

$$x^2 = 0.020 \times 10^{-4.87}$$
 or $x = 0.000519$ M = [H·]

Hence, the pH is given by:

 $pH = -log_{10}[H \cdot] = -log_{10}[0.000519] = 3.28$

Answer: **pH** = **3.28**

At 25 °C, 1.00 L of Solution B consists of 2.24 g of potassium propionate ($KC_3H_5O_2$) dissolved in water. Calculate the pH of Solution B.

The molar mass of KC₃H₅O₂ is: molar mass = (39.10 (K) + 3×12.01 (C) + 5×1.008 (H) + 2×16.00 (O)) g mol⁻¹ = 112.17 g mol-1

Thus, 2.24 g corresponds to:

number of moles = $\frac{\text{mass}}{\text{molar mass}} = \frac{2.24 \text{ g}}{112.17 \text{ g mol}^{-1}} = 0.0200 \text{ mol}$

If this is dissolved in 1.0 L, $[C_3H_5O_2]_{initial} = 0.0200$ M.

As $C_3H_5O_2^-$ is a weak base, $[C_3H_5O_2^-]$ must be calculated by considering the equilibrium:

ANSWER CONTINUES ON THE NEXT PAGE

Marks 8

	C ₃ H ₅ O ₂ ⁻	H ₂ O	~`	C ₃ H ₆ O ₂	OH-
initial	0.0200	large		0	0
change	- <i>y</i>	negligible		+ <i>y</i>	+y
final	0.0200 - y	large		у	у

The equilibrium constant K_b is given by:

$$K_{\rm b} = \frac{[{\rm C}_3{\rm H}_6{\rm O}_2][{\rm O}{\rm H}^-]}{[{\rm C}_3{\rm H}_5{\rm O}_2^-]} = \frac{y^2}{(0.0200 - y)}$$

For an acid and its conjugate base:

 $pK_a + pK_b = 14.00$

 $pK_b = 14.00 - 4.87 = 9.13$

As $pK_b = 9.13$, $K_b = 10^{-9.13}$. K_b is very small so $0.0200 - y \sim 0.0200$ and hence: $y^2 = 0.0200 \times 10^{-9.13}$ or y = 0.000000385 M = [OH⁻]

Hence, the pOH is given by:

 $pOH = -log_{10}[OH^{-}] = log_{10}[0.000000385] = 5.41$

Finally, pH + pOH = 14.00 so

pH = 14.00 - 5.41 = 8.59

Answer: **pH** = **8.59**

Solution B (1.00 L) is poured into Solution A (1.00 L) and allowed to equilibrate at 25 $^{\circ}$ C to give Solution C. Calculate the pH of Solution C.

Combining the two solutions will double the overall volume, to 2.00 L. As a result, the concentration of both the acid and base will halve: [acid] = 0.010 M and [base] = 0.0100 M.

The solution contains a weak acid and its conjugate base. The pH of this buffer solution can be calculated using the Henderson-Hasselbalch equation:

$$pH = pK_a + \log \frac{[base]}{[acid]} = 4.87 + \log \frac{0.0100}{0.010} = 4.87$$
Answer: $pH = 4.87$

If you wanted to adjust the pH of Solution C to be exactly equal to 5.00, which component in the mixture would you need to increase in concentration? More base is needed: add KC₃H₅O₂