• Peroxydisulfate and iodide ions react according to the following equation.

$$S_2O_8^{2-}(aq) + 3\Gamma(aq) \rightarrow 2SO_4^{2-}(aq) + I_3^{-}(aq)$$

The following rate data were collected at room temperature.

Experiment	$[S_2O_8^{2-}(aq)]_0(M)$	$[I^{-}(aq)]_{0}(M)$	Initial rate (mol $L^{-1} s^{-1}$)
1	0.080	0.034	$2.2 imes 10^{-4}$
2	0.080	0.017	$1.1 imes 10^{-4}$
3	0.160	0.017	$2.2 imes 10^{-4}$

Determine the rate law for the reaction.

Between experiments (1) and (2), $[S_2O_8^{2-}(aq)]_0$ is constant and $[\Gamma(aq)]_0$ is halved from 0.034 M to 0.017 M. This halves the initial rate. The rate is directly proportional to $[\Gamma(aq)]$: the reaction is first order with respect to $[\Gamma(aq)]$.

Between experiments (2) and (3), $[\Gamma(aq)]_0$ is constant and $[S_2O_8^{2-}(aq)]_0$ is doubled from 0.080 M to 0.160 M. This doubles the initial rate. The rate is directly proportional to $[S_2O_8^{2-}(aq)]$: the reaction is first order with respect to $[S_2O_8^{2-}(aq)]$.

Hence:

rate = $k[S_2O_8^{2-}(aq)][I^{-}(aq)]$

Calculate the value of the rate constant at room temperature.

From experiment (1), the rate = 2.2×10^{-4} M s⁻¹ when [S₂O₈²⁻(aq)] = 0.080 M and [I⁻ (aq)] = 0.034 M. Hence:

 $2.2 \times 10^{-4} \text{ M s}^{-1} = k(0.080 \text{ M})(0.034 \text{ M})$

 $k = 0.081 \text{ M}^{-1} \text{ s}^{-1}$

(Note that the units are worked out by requiring that the units on the two sides of the rate law are the same.)

Answer: 0.081 M⁻¹ s⁻¹