
• Sketch the resonances you would expect to observe for protons H_B and H_C in the ¹H NMR spectrum of compound **X**. Ensure that the approximate chemical shifts, as well as peak splittings and signal integrations are incorporated in your answer. (The resonance for H_A is provided as a guide.)

Marks 6

$$\mathbf{X}$$
 H_{A}
 H_{A}
 H_{A}
 H_{C}
 H_{C}
 H_{C}

 H_B have the highest shift since they are closest to the electronegative O atoms. There are two H_B atoms so the signal has an integral of 2. The H_B atoms are coupling to $3 \times H_C$ atoms giving rise to a (n+1)=(3+1)=4 line multiplet (a *quartet*).

 H_C have the lowest shift since they are further from the electronegative O atoms. There are three H_B atoms so the signal has an integral of 3. The H_C atoms are coupling to $2 \times H_B$ atoms giving rise to a (n+1)=(2+1)=3 line multiplet (a *triplet*).