• Explain why H₂SO₄ is a stronger acid than H₂SO₃.

Marks 2

The acidity of oxo-acids increases as the number of oxygen atoms increases.

This is best understood in terms of the relative stability of the negative charge on the conjugate base, HSO₄ and HSO₃:

$$\begin{bmatrix} \vdots \ddot{O} & -S & -\ddot{O} \vdots \\ \vdots \ddot{O} & -S & -\ddot{O} \end{bmatrix} \longrightarrow \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \vdots & -S & -\ddot{O} \vdots \\ \vdots & -S & -\ddot{O} \end{bmatrix} \oplus$$

The negative charge in HSO₄ is delocalized over 3 oxygen atoms whereas that in HSO₃ is delocalized over only 2 oxygen atoms. The greater stability of the HSO₄ anion leads to the higher acidity of the conjugate acid, HSO₄.