• Explain why compounds of *d*-block elements are frequently paramagnetic. Use examples in your answer.

Paramagnetism is the property of a compound to be attracted by an external magnetic field. It is a characteristic of any compound with unpaired electrons. *d*-Block elements have from 1 to 10 electrons in the *d*-orbitals. When forming compounds, some of these may be lost to give paramagnetic species. Species with odd numbers of electrons must be paramagnetic, species with even numbers of *d*-electrons, may or may not be paramagnetic. eg

Cu^{2+}, d^9	↑↓	↑↓	↑↓	↑↓	↑	must be paramagnetic
Zn^{2+}, d^{10}	↑↓	↑↓	↑↓	↑↓	↑↓	must be diamagnetic
Fe ²⁺ , d ⁶	↑↓	↑	↑	1	1	is paramagnetic

• Provide a systematic name for *cis*-[Co(en)₂Cl₂]Cl. Is this complex chiral? Explain your reasoning by drawing the structure of the complex. en = NH₂CH₂CH₂NH₂ = ethane-1,2-diamine = ethylenediamine

cis-dichloridobis(ethylenediamine)cobalt(III) chloride or *cis*-dichloridobis(ethane-1,2-diamine)cobalt(III) chloride

The complex is chiral as it is not superimposable on its mirror image.

2