• Solution A consists of a 0.020 M aqueous solution of aspirin (acetylsalicylic acid, C₉H₈O₄) at 25 °C. Calculate the pH of Solution A. The pK_a of aspirin is 3.52.

Marks 7

As $C_9H_8O_4$ is a weak acid, $[H^+]$ must be calculated by considering the equilibrium:

	C ₉ H ₈ O ₄	-	C ₉ H ₇ O ₄	\mathbf{H}^{+}
initial	0.020		0	0
change	-x		+ <i>x</i>	+ <i>x</i>
final	0.020 - x		x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm C_9 H_7 O_4}^-][{\rm H}^+]}{[{\rm C_9 H_7 O_{24}}]} = \frac{x^2}{(0.020 - x)}$$

As $pK_a = 3.52$, $K_a = 10^{-3.52}$. K_a is very small so $0.020 - x \sim 0.020$ and hence:

$$x^2 = 0.020 \times 10^{-3.52}$$
 or $x = 0.00246 \text{ M} = [\text{H}^+]$

Hence, the pH is given by:

$$pH = -log_{10}[H^{+}] = -log_{10}[0.00246] = 2.61$$

Answer: **2.61**

At 25 °C, 1.00 L of Solution B consists of 4.04 g of sodium acetylsalicylate $(NaC_9H_7O_4)$ dissolved in water. Calculate the pH of Solution B.

The molar mass of NaC₉H₇O₄ is:

molar mass =
$$(22.99 \text{ (Na)} + 9 \times 12.01 \text{ (C)} + 7 \times 1.008 \text{ (H)} + 4 \times 16.00 \text{ (O)}) \text{ g mol}^{-1}$$

= $202.136 \text{ g mol} \cdot 1$

Thus, 4.04 g corresponds to:

number of moles =
$$\frac{\text{mass}}{\text{molar mass}} = \frac{4.04 \text{ g}}{202.136 \text{ g mol}^{-1}} = 0.0200 \text{ mol}$$

If this is dissolved in 1.0 L, $[C_9H_7O_4]_{initial} = 0.0200 M$.

As $C_9H_7O_4^-$ is a weak base, $[C_9H_7O_4^-]$ must be calculated by considering the equilibrium:

CHEM1102 2009-N-3 November 2009

	C9H7O4	H ₂ O	1	C ₉ H ₈ O ₄	OH.
initial	0.0200	large		0	0
change	-y	negligible		+y	+y
final	0.0200 - y	large		у	у

The equilibrium constant K_b is given by:

$$K_{\rm b} = \frac{[{\rm C_9 H_8 O_4}][{\rm OH}^-]}{[{\rm C_9 H_7 O_4}^-]} = \frac{y^2}{(0.0200 - y)}$$

For an acid and its conjugate base:

$$pK_a + pK_b = 14.00$$

$$pK_b = 14.00 - 3.52 = 10.48$$

As p $K_b = 10.48$, $K_b = 10^{\circ}10.48$. K_b is very small so $0.0200 - y \sim 0.0200$ and hence: $y^2 = 0.0200 \times 10^{-10.48}$ or y = 0.000000814 M = [OH $^{\circ}$]

Hence, the pOH is given by:

$$pOH = -log_{10}[OH^{-}] = log_{10}[0.000000814] = 6.09$$

Finally,
$$pH + pOH = 14.00$$
 so $pH = 14.00 - 6.09 = 7.91$

Answer: **7.91**

Solution B (200.0 mL) is mixed with Solution A (400.0 mL) and water (200.0 mL) to give Solution C. Calculate the pH of Solution C after equilibration at 25 °C.

400.0 mL of solution A (the acid) contains:

$$number\ of\ moles = concentration \times volume = (0.0200\ mol\ L^{-1}) \times (0.4000\ L) \\ = 0.00800\ mol$$

200.0 mL of solution B (the base) contains:

number of moles = concentration
$$\times$$
 volume = (0.0200 mol L⁻¹) \times (0.2000 L) = 0.00400 mol

The final solution has a total volume of (200.0 + 400.0 + 200.0) mL = 800.0 mL.

The concentrations of acid and base in the final solution are:

CHEM1102 2009-N-3 November 2009

concentration of acid =
$$\frac{\text{number of moles}}{\text{volume}} = \frac{0.00800 \text{ mol}}{0.8000 \text{ L}} = 0.0100 \text{ M}$$

$$\text{concentration of base} = \frac{\text{number of moles}}{\text{volume}} = \frac{0.00400 \text{ mol}}{0.8000 \text{ L}} = 0.00500 \text{ M}$$

The solution contains a weak acid and its conjugate base. The pH of this buffer solution can be calculated using the Henderson-Hasselbalch equation:

$$pH = pK_a + log \frac{[base]}{[acid]} = 3.52 + log \frac{0.00500}{0.0100} = 3.22$$

Answer: **3.22**

If you wanted to adjust the pH of Solution C to be exactly equal to 3.00, which component in the mixture would you need to increase in concentration?

To lower the pH, more acid is required: solution A