• Derive expressions for the equilibrium constants for the complexation of $Pb^{2+}(K_1)$ and of $Ca^{2+}(K_2)$ by EDTA⁴⁻.

$$Pb^{2+} + EDTA^{4-} \iff [Pb(EDTA)]^{2-} K_1 = \frac{[Pb(EDTA]^{2-}]}{[Pb^{2+}][EDTA^{4-}]}$$

$$Ca^{2+} + EDTA^{4-} \iff [Ca(EDTA)]^{2-} K_2 = \frac{[Ca(EDTA]^{2-}]}{[Ca^{2+}][EDTA^{4-}]}$$

Briefly explain why the chelating agent, EDTA, is administered as $[Ca(EDTA)]^{2-}$ to treat lead poisoning and determine which of K_1 or K_2 must be greater for the therapy to be effective.

 K_1 must be greater than K_2 for the therapy to be effective.

 $[Ca^{2+}]$ is much greater than $[Pb^{2+}]$ in the body, so need $K_1 > K_2$ to form the Pb complex. If EDTA is not administered as the Ca complex, it will strip Ca^{2+} from the body.