CHEM1102 2010-J-3 June 2010

• Following blood donation, a solution of sodium oxalate is added to remove Ca^{2+} ions (as calcium oxalate, $\text{CaC}_2\text{O}_4\cdot\text{H}_2\text{O}$, K_{sp} 2.3 × 10⁻⁹), which cause the blood to clot. If the concentration of Ca^{2+} ions in blood is 9.7 × 10⁻⁵ g mL⁻¹, and 100.0 mL of 0.1550 M Na₂C₂O₄ is added to a 104 mL sample of blood, what will be the concentration (in mol L⁻¹) of Ca^{2+} ions remaining in the blood?

The amount of Ca^{2+} present in 100.0 mL is 9.7×10^{-3} g. As its molar mass is 40.08 g mol⁻¹, this corresponds to:

number of moles = mass / molar mass =
$$= (9.7 \times 10^{-3} \text{ g}) / (40.08 \text{ g mol}^{-1}) = 2.4 \times 10^{-4} \text{ mol}$$

The number of moles of $C_2O_4^{2-}(aq)$ added is:

$$\begin{array}{l} number\ of\ moles = concentration \times volume \\ = (0.1550\ mol\ L^{\text{--}1}) \times (0.1000\ L) = 0.01550\ mol \end{array}$$

When this is added to the blood, the total volume increases to (100.0 + 104) mL = 204 mL. The concentration of $C_2O_4^{2-}(aq)$ is now:

concentration = number of moles / volume
=
$$(0.01550 \text{ mol}) / (0.204 \text{ L}) = 0.0760 \text{ mol L}^{-1}$$

For CaC₂O₄.H₂O(s), the solubility product is for the reaction:

$$CaC_2O_4.H(s) \iff Ca^{2+}(aq) + C_2O_4^{2-}(aq) + H_2O(l)$$

$$K_{sp} = [Ca^{2+}(aq)][C_2O_4^{2-}(aq)]$$

The amount of $C_2O_4^{2-}$ is *much* larger than the amount of Ca^{2+} present so precipitation of $CaC_2O_4.H_2O(s)$ does not reduce its concentration significantly. Hence:

$$[Ca^{2+}(aq)] = K_{sp} / [C_2O_4^{2-}(aq)] = (2.3 \times 10^{-9} / 0.0760) M = 3.0 \times 10^{-8} M$$

Answer: 3.0×10^{-8} M

4