

The ratio of Cu to Au atoms is therefore 3:1 and the formula is Cu₃Au.

Answer: Cu₃Au

Pure gold is 24 carat, whilst gold alloys consisting of 75 % gold by weight are termed 18 carat gold. What carat gold is this alloy?

The molar mass of Cu₃Au is:

molar mass = $(3 \times 63.55 (Cu) + 1 \times 196.97 (Au))$ g mol⁻¹ = 387.62 g mol⁻¹.

1 mol of Cu₃Au contains 1 mol of Au, the percentage by weight of gold in Cu₃Au is: percentage by weight = $\frac{196.97}{387.62} \times 100 \% = 50 \%$

As a 100 % alloy is 24 carat and a 75% alloy is 18 carat, a 50 % alloy is 12 carat.

Answer: 12 carat

What is the volume (in cm³) of the unit cell?

As the unit cell is cubic:

volume = (side length)³ = a^3 = (0.36 × 10⁻⁹ m)³ = 4.7 × 10⁻²⁹ m³

$$= 4.7 \times 10^{-23} \text{ cm}^3$$

Answer: $4.7 \times 10^{-23} \text{ cm}^3$

What is the density (in g cm⁻³) of the alloy?

From above, the unit cell contains 1 Au atom and 3 Cu atoms: mass of gold = 196.97 g mol⁻¹ / 6.022 × 10²³ mol⁻¹ = 3.271 × 10⁻²² g mass of copper = 3 × 63.55 g mol⁻¹ / 6.022 × 10²³ mol⁻¹ = 3.166 × 10⁻²² g mass of unit cell = (3.271 × 10⁻²² + 3.166 × 10⁻²²) g = 6.437 × 10⁻²² g The density is therefore: density = mass / volume = 6.437 × 10⁻²² g / 4.7 × 10⁻²³ cm³ = 1.4 × 10¹ g cm⁻³ Answer: 14 g cm⁻³