

Graph B is correct.

Graphs A and C: As $K_c = 2$, the reaction does not go anywhere near to completion. At equilibrium, the concentrations of reactants and products are both significant. Graphs A and C can therefore be rejected because at least one reagent in both these graphs has dropped to 0. Also, in Graph C, the rates of change of [Br₂] and [Cl₂] are different, at variance with the stoichiometry of the reaction.

Graph D: Cl_2 is the limiting reagent, so the maximum [BrCl] that can form is twice the initial [Cl₂]. But as only half the Cl₂ has been used, the maximum [BrCl] that can form is $0.2 \times 2 = 0.4$ M.