- 2
- Titanium has three common oxidation states, +II, +III and +IV. Using the box notation to represent atomic orbitals, predict whether compounds of Ti²⁺, Ti³⁺ and Ti⁴⁺ would be paramagnetic or diamagnetic.

Ti is in group 4: it has 4 valence electrons. Ti^{2+} therefore has (4 - 2) = 2 remaining: it has a d^2 configuration. Ti^{3+} therefore has (4 - 3) = 1 remaining: it has a d^1 configuration. Ti^{4+} therefore has (4 - 4) = 0 remaining: it has a d^0 configuration.

These electrons are arranged in the five d orbitals to minimise the repulsion between them. This is achieved by keeping the maximum number possible unpaired.

Ti ²⁺		↑		
Ti ³⁺	↑			
Ti ⁴⁺				

Ti²⁺ and Ti³⁺ have unpaired electrons and are paramagnetic. Ti⁴⁺ has no unpaired electrons and is diamagnetic.

• Provide a systematic name for the complex *trans*-[NiBr₂(en)₂] and draw its structure. Is this complex chiral? Explain your reasoning.

4

trans-dibromidobis(ethylenediamine)nickel(II) or

en = ethylenediamine = ethane-1,2-diamine

trans-dibromidobis(ethane-1,2-diamine)nickel(II)

It is not chiral as it is superimposable on (*i.e.* identical to) its mirror image.

Br