• Calculate the molar solubility of lead bromide given that its solubility product constant, K_{sp} , is 2.1×10^{-6} . The dissolution equilibrium and solubility product are: PbBr₂(s) \implies Pb²⁺(aq) + 2Br⁻(aq) $K_{sp} = [Pb^{2+}(aq)][Br⁻(aq)]^2$ From the chemical equation, if *s* mol of dissolves in 1.0 L, $[Pb^{2+}(aq)] = s$ M and [Br⁻(aq)] = 2s M. Hence: $K_{sp} = (s)(2s)^2 = 4s^3 = 2.1 \times 10^{-6}$ or $s = 8.1 \times 10^{-3}$ M Answer: 8.1×10^{-3} M