Marks

5

• BaSO₄ is used as a contrast agent in medical imaging. It has a K_{sp} of 1.1×10^{-10} . What is the molarity of Ba²⁺ ions in a saturated aqueous solution of BaSO₄?

The dissolution reaction is: $BaSO_4(s) \iff Ba^{2+}(aq) + SO_4^{2-}(aq) \qquad K_{sp} = [Ba^{2+}(aq)][SO_4^{2-}(aq)]$ From the reaction, $[Ba^{2+}(aq)] = [SO_4^{2-}(aq)]$. Hence if $[Ba^{2+}(aq)] = S$: $S^2 = K_{sp} = 1.1 \times 10^{-10}$ $S = 1.0 \times 10^{-5} M$ Multiply and the presence of a 0.1 M solution of Na₂SO₄? The added SO₄²⁻ will dominate over that produced in the dissolution reaction so $[SO_4^{2-}(aq)] = 0.1 M.$ For the dissolution reaction to still be at equilibrium: $K_{sp} = [Ba^{2+}(aq)][SO_4^{2-}(aq)] = 1.1 \times 10^{-10}$ With $[SO_4^{2-}(aq)] = 0.1 M$, $[Ba^{2+}(aq)] = 0.1 M,$ The lethal concentration of Ba^{2+} in humans is about 60 mg L⁻¹ (4 × 10⁻⁴ M). Is there any advantage to administering BaSO₄ in the presence of 0.1 M Na₂SO₄ solution?

Explain your reasoning.

No. The lethal $[Ba^{2+}(aq)]$ is 40 times greater than the $[Ba^{2+}(aq)]$ in normal aqueous solution.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.