• What is the pH of a 0.100 M solution of sodium acetate? The pK_a of acetic acid is 4.76.

Acetate is a weak base so [OH⁻] must be calculated by considering the equilibrium:

	CH ₃ CO ₂ ⁻	H ₂ O	1	CH ₃ COOH	OH-
initial	0.100	large		0	0
change	- <i>x</i>	negligible		+x	+x
final	0.100 - x	large		x	x

The equilibrium constant K_b is given by:

$$K_{\rm b} = \frac{[\rm CH_3COOH][\rm OH^-]}{[\rm CH_3CO_2^-]} = \frac{x^2}{(0.100 - x)}$$

For an acid and its conjugate base:

$$\mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$$

 $pK_b = 14.00 - 4.76 = 9.24$

As $pK_b = 9.24$, $K_b = 10^{-9.24}$. K_b is very small so $0.100 - x \sim 0.100$ and hence: $x^2 = 0.100 \times 10^{-9.24}$ or $x = 7.59 \times 10^{-6}$ M = [OH⁻]

Hence, the pOH is given by:

$$pOH = -log_{10}[OH^{-}] = log_{10}[7.59 \times 10^{-6}] = 5.12$$

Finally, pH + pOH = 14.00 so

pH = 14.00 - 5.12 = 8.88

pH = **8.88**

ANSWER CONTINUES ON THE NEXT PAGE

What is the ratio of acetate ion to acetic acid in this solution?

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.