Marks

• The K_{sp} for Fe(OH)₃ is 2.64×10^{-39} . What is its molar solubility in water?

The dissolution reaction and is equilibrium constant expression are: Fe(OH)₃(s) \rightleftharpoons Fe³⁺(aq) + 3OH⁻(aq) $K_{sp} = [Fe^{3+}(aq)][OH⁻(aq)]^3$ The molar solubility is the number of moles that dissolve in a litre. If *s* mol dissolves in a litre: [Fe³⁺(aq)] = *s* M and [OH⁻(aq)] = 3*s* M Hence: $K_{sp} = (s)(3s)^3 = 27s^4 = 2.64 \times 10^{-39}$ so $s = 9.94 \times 10^{-11}$ M Answer: 9.94×10^{-11} M