• Given the following experimental data, find the rate law and the rate constant for the following reaction: $NO(g) + NO_2(g) + O_2(g) \rightarrow N_2O_5(g)$ Rate / M s^{-1} Run [NO(g)] / M $[NO_2(g)] / M$ $[O_2(g)] / M$ 2.1×10^{-2} 1 0.10 0.10 0.10 2 0.20 0.10 0.10 4.2×10^{-2} 1.26×10^{-1} 3 0.20 0.30 0.20 4 2.1×10^{-2} 0.10 0.10 0.20

Between run (1) and (2), [NO(g)] is doubled but $[NO_2(g)]$ and $[O_2(g)]$ are kept constant. The doubling in [NO(g)] causes a doubling in the rate: the rate is proportional to $[NO(g)]^1$.

Between run (1) and (4), $[O_2(g)]$ is doubled but [NO(g)] and $[NO_2(g)]$ are kept constant. The doubling in $[O_2(g)]$ causes no change in the rate: the rate is independent of $[O_2(g)]$.

Between run (2) and (3), $[NO_2(g)]$ is trebled but [NO(g)] is kept constant. Although $[O_2(g)]$ is doubled, this has no effect on the rate (see directly above). The trebling in $[NO_2(g)]$ causes the rate to treble: the rate is proportional to $[NO_2(g)]^1$

Overall:

rate = $k[NO(g)][NO_2(g)]$

Using run (1), rate = 2.1×10^{-2} M and [NO(g)] = [NO₂(g)] = 0.10 M. Hence:

 $k = \text{rate} / [\text{NO}(g)][\text{NO}_2(g)]$ = 2.1 × 10⁻² M s⁻¹ / (0.10 M)² = 2.1 M⁻¹ s⁻¹

Rate = $k[NO(g)][NO_2(g)]$

 $k = 2.1 \text{ M}^{-1} \text{ s}^{-1}$

Marks 3

ANSWER CONTINUES ON THE NEXT PAGE

- 3
- The rate constant for a reaction is $5.0 \times 10^{-3} \text{ s}^{-1}$ at 215 °C and $1.2 \times 10^{-1} \text{ s}^{-1}$ at 452 °C. What is the activation energy of the reaction in kJ mol⁻¹?

The rate constant varies with temperature according to the Arrhenius equation: $\ln \left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$ At $T_1 = (215 + 273)$ K = 488 K and $k_1 = 5.0 \times 10^{-3}$ s⁻¹. At $T_2 = (452 + 273)$ K = 725 K and $k_2 = 1.2 \times 10^{-1}$ s⁻¹. Hence: $\ln \left(\frac{1.2 \times 10^{-1}}{5.0 \times 10^{-3}}\right) = \frac{E_a}{8.314} \left(\frac{1}{488} - \frac{1}{725}\right)$ $E_a = 39$ kJ mol⁻¹ Answer: 39 kJ mol⁻¹

What is the rate constant for this reaction at 100 °C?

Using $T_1 = 488$ K and $k_1 = 5.0 \times 10^{-3}$ s⁻¹, when $T_2 = (100 + 273)$ K = 373 K:

$$\ln\left(\frac{k_2}{5.0 \times 10^{-3}}\right) = \frac{39 \times 10^3}{8.314} \left(\frac{1}{488} - \frac{1}{373}\right)$$
$$k_2 = 2.5 \times 10^{-4} \text{ s}^{-1}$$
Answer: $2.5 \times 10^{-4} \text{ s}^{-1}$