• The pK_a of formic acid, HCO₂H, is 3.77. What is the pH of a 0.20 M solution of formic acid?

As formic acid is a weak acid, $[H_3O^+]$ must be calculated using a reaction table:

	HCO ₂ H	H ₂ O	~~	H ₃ O ⁺	HCO ₂ ⁻
initial	0.20	large		0	0
change	- <i>x</i>	negligible		+x	+x
final	0.20 <i>-x</i>	large		x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm HCO}_2^-]}{[{\rm HCO}_2{\rm H}]} = \frac{x^2}{0.20 - x}$$

As $pK_a = -\log_{10}K_a$, $K_a = 10^{-3.77}$ and is very small, $0.20 - x \sim 0.20$ and hence:

$$x^2 = 0.20 \times 10^{-3.77}$$
 or $x = 5.8 \times 10^{-3} \text{ M} = [\text{H}_3\text{O}^+]$

Hence, the pH is given by:

$$pH = -log_{10}[H_3O^+] = -log_{10}(5.8 \times 10^{-3}) = 2.23$$

pH = 2.23

Give the equation for the reaction of formic acid with solid sodium hydroxide.

$$HCOOH(aq) + NaOH(s) \rightarrow HCO_2^{-}(aq) + Na^{+}(aq) + H_2O(l)$$

Calculate the ratio of formate ion / formic acid required to give a buffer of pH 4.00.

Using the Henderson-Hasselbalch equation, $pH = pK_a + \log \frac{[base]}{[acid]}$ $4.00 = 3.77 + \log \frac{[HCO_2^{-1}]}{[HCO_2H]}$ So, $\frac{[HCO_2^{-1}]}{[HCO_2H]} = 10^{0.23} = 1.70$

Answer: **1.70**

ANSWER CONTINUES ON THE NEXT PAGE

Marks 7 What amount (in mol) of sodium hydroxide must be added to 100.0 mL of 0.20 M HCO₂H to prepare a solution buffered at pH 4.00?

If the concentration of OH⁻ which is added is x M then this will react with HCO_2H to produce HCO_2^- so that: $[HCO_2H] = (0.20 - x) M$ and $[HCO_2^-] = x M$ From above, if pH = 4.00, then $\frac{[HCO_2^-]}{[HCO_2H]} = 1.70$. Hence: $\frac{x}{0.20 - x} = 1.70$ so x = 0.13To achieve $[OH^-(aq)] = 0.13$ mol L⁻¹ in 100.0 mL, the number of moles of NaOH that must be added is: number of moles = concentration × volume $= 0.13 \text{ mol } L^{-1} \times 0.1000 \text{ L} = 0.013 \text{ mol}$ Answer: 0.013 mol