• What is the solubility of Cu(OH)₂ in mol L⁻¹? K_{sp} (Cu(OH)₂) is 1.6 × 10⁻¹⁹ at 25 °C.

Marks 7

The dissolution reaction and associated solubility product are:

$$Cu(OH)_2(s) \iff Cu^{2+}(aq) + 2OH^{-}(aq)$$
 $K_{sp} = [Cu^{2+}(aq)][OH^{-}(aq)]^2$

If x mol dissolve in one litre, $[Cu^{2+}(aq)] = x M$ and $[OH^{-}(aq)] = 2x$. Hence:

$$K_{\rm sp} = (x)(2x)^2 = 4x^3 = 1.6 \times 10^{-19}$$

$$x = 3.4 \times 10^{-7} \text{ M}$$

Answer: $3.4 \times 10^{-7} \text{ M}$

The overall formation constant for $[Cu(NH_3)_4]^{2+}$ is 1.0×10^{13} . Write the equation for the reaction of Cu^{2+} ions with excess ammonia solution.

$$Cu^{2+}(aq) + 4NH_3(aq) \implies [Cu(NH_3)_4]^{2+}(aq)$$

Calculate the value of the equilibrium constant for the following reaction.

$$Cu(OH)_2(s) + 4NH_3(aq)$$
 \longrightarrow $[Cu(NH_3)_4]^{2+}(aq) + 2OH^-(aq)$

This reaction can be considered to occur via (i) $Cu(OH)_2$ dissolving followed by (ii) the $Cu^{2+}(aq)$ ions that form being complexed by ammonia.

For the formation of $[Cu(NH_3)_4]^{2+}$, the equilibrium constant is:

$$K_{\text{stab}} = \frac{[\text{Cu}(\text{NH}_3)_4^{2+}]}{[\text{Cu}^{2+}][\text{NH}_3]^4} = 1.0 \times 10^{13}$$

For the reaction of Cu(OH)₂(s) with NH₃(aq), the equilibrium constant is:

$$K = \frac{[Cu(NH_3)_4^{2+}][OH^-(aq)]^2}{[NH_3]^4}$$

To obtain K, K_{sp} is multiplied by K_{stab} :

$$K = K_{sp} \times K_{stab}$$

$$= \frac{[Cu^{2+}(aq)]}{[Cu^{2+}]} [OH^{-}(aq)]^{2} \times \frac{[Cu(NH_{3})_{4}^{2+}]}{[Cu^{2+}]} [NH_{3}]^{4} = \frac{[Cu(NH_{3})_{4}^{2+}][OH^{-}(aq)]^{2}}{[NH_{3}]^{4}}$$

$$= (1.6 \times 10^{-19}) \times (1.0 \times 10^{13}) = 1.6 \times 10^{-6}$$

Answer: 1.6×10^{-6}

Would you expect $Cu(OH)_2(s)$ to dissolve in 1 M NH_3 solution? Briefly explain your answer.

No. Equilibrium constant K is very small so the reaction lies heavily in favour of reactants.