• Solution A consists of a 0.050 M aqueous solution of benzoic acid, C_6H_5COOH , at 25 °C. Calculate the pH of Solution A. The p K_a of benzoic acid is 4.20.

As benzoic acid is a weak acid, $[H_3O^+]$ must be calculated using a reaction table:

	C ₆ H ₅ COOH	~`	\mathbf{H}^{+}	C ₆ H ₅ COO ⁻
initial	0.050		0	0
change	- <i>x</i>		+x	+x
final	0.050 <i>-x</i>		x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm H}^+][{\rm C_6H_5C00^-}]}{[{\rm C_6H_5C00H}]} = \frac{x^2}{0.050 - x}$$

As $pK_a = -\log_{10}K_a$, $K_a = 10^{-4.20}$ and is very small, $0.050 - x \sim 0.050$ and hence:

$$x^2 = 0.050 \times 10^{-4.2}$$
 or $x = 1.78 \times 10^{-3} \text{ M} = [\text{H}^+]$

Hence, the pH is given by:

$$pH = -log_{10}[H^+] = -log_{10}(1.78 \times 10^{-3}) = 2.75$$

pH = **2.75**

Other than water, what are the major species present in solution A?

 $K_{\rm a}$ is very small and the equilibrium lies almost completely to the left. The major species present are water and the undissociated acid: C₆H₅COOH

Solution B consists of a 0.050 M aqueous solution of ammonia, NH₃, at 25 °C. Calculate the pH of Solution B. The pK_a of NH₄⁺ is 9.24.

NH₃ is a weak base so [OH⁻] must be calculated by considering the equilibrium:

	NH ₃	H ₂ O	 NH4 ⁺	OH-
initial	0.050	large	0	0
change	- <i>y</i>	negligible	+ <i>y</i>	+ <i>y</i>
final	0.050 - y	large	у	у

The equilibrium constant K_b is given by:

ANSWER CONTINUES ON THE NEXT PAGE

Marks 6

Other than water, what are the major species present in solution B?

 $K_{\rm b}$ is very small and the equilibrium lies almost completely to the left. The major species present are water and the unprotonated weak base: NH₃

THIS QUESTION CONTINUES ON THE NEXT PAGE.