• The salt calcium oxalate, CaC_2O_4 ·H₂O, is sparingly soluble. Write down the chemical equation for its dissolution in water and the expression for K_{sp} .

$$CaC_2O_4 \cdot H_2O(s) \Rightarrow Ca^{2+}(aq) + C_2O_4^{2-}(aq) + H_2O(l)$$

 $K_{sp} = [Ca^{2+}(aq)][C_2O_4^{2-}(aq)]$

What is the molar solubility of calcium oxalate? $K_{sp} = 2.3 \times 10^{-9}$

If x mol of the salt dissolves in one litre, then the molar solubility is x M. If x mol dissolves in one litre then $[Ca^{2+}(aq)] = x M$ and $[C_2O_4^{2-}(aq)] = x M$.

$$K_{\rm sp} = [{\rm Ca}^{2+}({\rm aq})][{\rm C}_2{\rm O}_4^{2-}({\rm aq})] = (x)(x) = x^2 = 2.3 \times 10^{-9}$$

 $x = 4.8 \times 10^{-5} \text{ mol } \text{L}^{-1}$

Answer: $4.8 \times 10^{-5} \text{ mol } \text{L}^{-1}$

If additional calcium oxalate is added to a saturated solution, what is the effect on $[Ca^{2+}(aq)]$?

A saturated solid has the maximum possible dissolution. Adding additional solid has no effect on the equilibrium and so no effect on $[Ca^{2+}(aq)]$.

Following blood donation, a solution of sodium oxalate is added to remove $Ca^{2+}(aq)$ ions which cause the blood to clot. The concentration of $Ca^{2+}(aq)$ ions in blood is 9.7×10^{-5} g mL⁻¹. If 100.0 mL of 0.1550 M Na₂C₂O₄ is added to 100.0 mL of blood, what will be the concentration (in mol L⁻¹) of Ca²⁺ ions remaining in the blood?

The amount of Ca^{2+} present in 100.0 mL is 9.7×10^{-3} g. As its molar mass is 40.08 g mol⁻¹, this corresponds to:

number of moles = mass / molar mass = = $(9.7 \times 10^{-3} \text{ g}) / (40.08 \text{ g mol}^{-1}) = 2.4 \times 10^{-4} \text{ mol}$

The number of moles of $C_2O_4^{2-}(aq)$ added is:

number of moles = concentration × volume = $(0.1550 \text{ mol } \text{L}^{-1}) \times (0.1000 \text{ L}) = 0.01550 \text{ mol}$

The amount of $C_2O_4^{2-}$ is *much* larger than the amount of Ca^{2+} present so precipitation of $CaC_2O_4.H_2O(s)$ does not reduce the $C_2O_4^{2-}$ significantly.

When the oxalate is added to the blood, the total volume increases to (100.0 + 100.0) mL = 200.0 mL. The concentration of C₂O₄²⁻(aq) is now:

Marks 9

concentration = number of moles / volume = (0.01550 mol) / (0.2000 L) = 0.0775 mol L ⁻¹	
Using $K_{sp} = [Ca^{2+}(aq)][C_2O_4^{2-}(aq)]$:	
$[Ca^{2+}(aq)] = K_{sp} / [C_2O_4^{2-}(aq)] = (2.3 \times 10^{-9} / 0.0775) \text{ M} = 3.0 \times 10^{-8} \text{ M}$	
	Answer: 3.0×10^{-8} M