• Complete the following table. Make sure you give the name of the starting material where indicated.

STARTING MATERIAL	REAGENTS/ CONDITIONS	STRUCTURAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
CH ₂ Br	KCN / ethanol (solvent)	CN
Br	hot conc. KOH in ethanol solvent	

• Concentrated HCl reacts with 2-methyl-2-propanol in an S_N1 reaction to give 2-chloro-2-methylpropane as shown below. Complete the reaction mechanism by adding curly arrows and formal charges on the intermediates as appropriate.

Marks 4

Explain what each part of the abbreviation S_N1 means.

S = substitution

N = nucleophilic

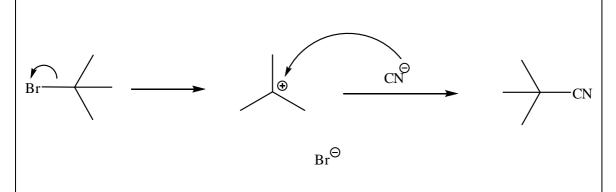
1 = unimolecular

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
Br	hot conc. KOH in ethanol solvent	// CROTH WE TRODUCT(S)
MgBr	 CO₂ H[⊕]/H₂O 	СООН

STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
Br	hot conc. KOH in ethanol	
MgBr	1. CO ₂ 2. H [⊕] / H ₂ O	СООН

• Complete the following table. If there is no reaction, write "NR". Show any relevant stereochemistry.


STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
	H ₂ , Pd/C	
Br	conc. KOH in ethanol solvent	
Cl	hot aqueous NaOH	СІОН

STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
MgI		O [©]

• Draw the structure of the major organic product formed in the following reactions.

• Add curly arrows to complete the following mechanism.

Marks 4

Classify this reaction as $S_{\rm N}1$ or $S_{\rm N}2$ and explain what the three parts of this descriptor signify.

The reaction is an S_N1 reaction:

S = substitution (Br is substituted for CN)

 $N = nucleophilic (CN^- is negatively charged and attacks the positively charged carbon)$

1 = unimolecular (the first step, involving breaking a C-Br bond, is rate determining and involves only one molecule).

Starting material	Reagents / Conditions	Major organic product(s)
	HCl	Cl
Br	hot conc. KOH ethanol (solvent)	
I	⊙ CN	CN

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Draw the structure of the major organic product formed in the following reactions.

$$= \underbrace{ \begin{array}{c} \text{excess Br}_2 \\ \text{Br} \\ \text{Br} \\ \text{Br} \end{array} }_{\text{Br}} \text{H}$$

$$Cl$$
 Cl Cl Cl Cl

CHEM1102 2006-J-9 June 2006

• Add curly arrows to complete the following mechanism.

Marks 5

Classify this reaction as $S_N 1$ or $S_N 2$ and explain what the three parts of this descriptor signify.

The reaction is S_N2 : a substitution ('S') (CN for Br) involving nucleophilic ('N') attack of CN on the substrate. The rate determining step is bimolecular as two ('2') molecules (CN and CH₃CH₂Br) are involved.

• Devise a synthesis of the following compounds from the starting material indicated. Note that more than one step may be required and you should indicate all necessary steps and the constitutional formulas of any intermediate compounds.

2005-J-7

• Give the constitutional formula and the name of the major organic product of each of the following reactions.