The structures of the drugs aspirin and benzocaine are shown below.

(a) Draw the conjugate base of aspirin and the conjugate acid of benzocaine.
(b) Circle the form of each that will be present in a highly acidic environment.

Ions are less likely to cross cell membranes than uncharged molecules. One of the drugs above is absorbed in the acid environment of the stomach and the other is absorbed in the basic environment of the intestine. Identify which is absorbed in each environment below and briefly explain your answers.

Drug absorbed in the stomach: aspirin / benzocaine
Drug absorbed in the intestine: aspirin / benzocaine

Aspirin is absorbed in the stomach as it remains in the neutral uncharged form in the acidic environment.

Benzocaine is absorbed in the intestine as it remains in the neutral uncharged form in the basic environment.

Aspirin, C₉H₈O₄, is not very soluble in water. “Soluble aspirin”, the sodium salt NaC₉H₇O₄, is often administered instead. Is a solution of “soluble aspirin” acidic or basic? Briefly explain your answer.

Basic. The C₉H₇O₄⁻(aq) ion reacts with water (i.e. undergoes hydrolysis) to generate a small amount of OH⁻ ions. The C₉H₇O₄⁻(aq) ion is a weak base, so the following equilibrium reaction lies very much in favour of the reactants.

\[
\text{C}_9\text{H}_7\text{O}_4^-(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{C}_9\text{H}_8\text{O}_4(aq) + \text{OH}^-(aq)
\]

THIS QUESTION CONTINUES ON THE NEXT PAGE.
Calculate the pH of a 0.010 M solution of aspirin at 25 °C. The pKₐ of aspirin is 3.5 at this temperature.

As aspirin is a weak acid, [H₃O⁺] must be calculated using a reaction table:

<table>
<thead>
<tr>
<th></th>
<th>C₉H₈O₄(aq)</th>
<th>H₂O</th>
<th>H₃O⁺</th>
<th>C₉H₇O₄⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.010</td>
<td>large</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>-x</td>
<td>negligible</td>
<td>+x</td>
<td>+x</td>
</tr>
<tr>
<td>final</td>
<td>0.010 -x</td>
<td>large</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

The equilibrium constant Kₐ is given by:

\[
K_a = \frac{[H_3O^+][C_9H_7O_4^-]}{[C_9H_8O_4(aq)]} = \frac{x^2}{0.010-x}
\]

As pKₐ = -log₁₀Kₐ, Kₐ = 10⁻³.₅ and is very small, 0.010 - x ~ 0.010 and hence:

\[
x^2 = 0.010 \times 10^{-3.5}
\]

or \[x = 1.8 \times 10^{-3} \text{ M} = [H_3O^+]
\]

Hence, the pH is given by:

\[
\text{pH} = -\log_{10}[H_3O^+] = -\log_{10}(1.8 \times 10^{-3}) = 2.8
\]

\[
\text{pH} = 2.8
\]

Ammonia, NH₃, is a weak base in water. Write the equation for the acid/base reaction between aspirin and ammonia.

\[
C_9H_8O_4(aq) + NH_3(aq) \rightarrow C_9H_7O_4^-(aq) + NH_4^+(aq)
\]

What is the expression for the equilibrium constant, K, for this reaction?

\[
K = \frac{[NH_4^+(aq)][C_9H_7O_4^- (aq)]}{[NH_3 (aq)][C_9H_8O_4(aq)]}
\]

Rewrite this expression in terms of the Kₐ of aspirin and the Kₐ of NH₄⁺. (Hint: multiply by [H⁺]/[H⁺] = 1) Hence calculate the value of K. The pKₐ of NH₄⁺ is 9.2.

For C₉H₈O₄, \[K_a (C_9H_8O_4) = \frac{[H_3O^+][C_9H_7O_4^- (aq)]}{[C_9H_8O_4(aq)]} = 10^{-3.5}\]

For NH₃, \[K_a (NH_4^+) = \frac{[NH_3(aq)][H^+(aq)]}{[NH_4^+(aq)]} = 10^{-9.2}\]
\[K = \frac{[\text{NH}_4^+(aq)][\text{C}_9\text{H}_7\text{O}_4^- (aq)]}{[\text{NH}_3(aq)][\text{C}_9\text{H}_8\text{O}_4 (aq)]]} = \frac{[\text{NH}_4^+(aq)]}{[\text{NH}_3(aq)][\text{H}^+(aq)]} \times \frac{[\text{H}^+(aq)][\text{C}_9\text{H}_7\text{O}_4^- (aq)]}{[\text{C}_9\text{H}_8\text{O}_4 (aq)]]} \]

\[= \frac{1}{K_a(\text{NH}_3)} \times K_a(\text{C}_9\text{H}_8\text{O}_4) \]

\[K = \frac{1}{10^{-9.2}} \times 10^{-3.5} = 10^{5.7} = 5.0 \times 10^5 \]

Answer: 5.0×10^5

Would aspirin dissolve in a solution of ammonia? Explain your answer.

The equilibrium constant for the reaction of ammonia and aspirin is very large: aspirin will dissolve.
As benzoic acid is a weak acid, $[\text{H}_3\text{O}^+]$ must be calculated using a reaction table:

<table>
<thead>
<tr>
<th></th>
<th>$\text{C}_6\text{H}_5\text{COOH}$</th>
<th>H^+</th>
<th>$\text{C}_6\text{H}_5\text{COO}^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.050</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>$-x$</td>
<td>$+x$</td>
<td>$+x$</td>
</tr>
<tr>
<td>final</td>
<td>0.050 $-x$</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

The equilibrium constant K_a is given by:

$$K_a = \frac{[\text{H}^+][\text{C}_6\text{H}_5\text{COO}^-]}{[\text{C}_6\text{H}_5\text{COOH}]} = \frac{x^2}{0.050-x}$$

As $pK_a = -\log_{10}K_a$, $K_a = 10^{-4.20}$ and is very small, $0.050-x \approx 0.050$ and hence:

$$x^2 = 0.050 \times 10^{-4.2} \quad \text{or} \quad x = 1.78 \times 10^{-3} \text{ M} = [\text{H}^+]$$

Hence, the pH is given by:

$$\text{pH} = -\log_{10}[\text{H}^+] = -\log_{10}(1.78 \times 10^{-3}) = 2.75$$

pH = 2.75

Other than water, what are the major species present in solution A?

K_a is very small and the equilibrium lies almost completely to the left. The major species present are water and the undissociated acid: $\text{C}_6\text{H}_5\text{COOH}$

Solution B consists of a 0.050 M aqueous solution of ammonia, NH_3, at 25 °C. Calculate the pH of Solution B. The pK_a of NH_4^+ is 9.24.

NH_3 is a weak base so $[\text{OH}^-]$ must be calculated by considering the equilibrium:

<table>
<thead>
<tr>
<th></th>
<th>NH_3</th>
<th>H_2O</th>
<th>NH_4^+</th>
<th>OH^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.050</td>
<td>large</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>$-y$</td>
<td>negligible</td>
<td>$+y$</td>
<td>$+y$</td>
</tr>
<tr>
<td>final</td>
<td>0.050 $-y$</td>
<td>large</td>
<td>y</td>
<td>y</td>
</tr>
</tbody>
</table>

The equilibrium constant K_b is given by:
For an acid and its conjugate base:

\[pK_a + pK_b = 14.00 \]

\[pK_b = 14.00 - 9.24 = 4.76 \]

As \(pK_b = 4.76 \), \(K_b = 10^{-4.76} \). \(K_b \) is very small so \(0.050 - y \sim 0.050 \) and hence:

\[y^2 = 0.050 \times 10^{-4.76} \text{ or } y = 9.32 \times 10^{-4} \text{ M} = [OH^-] \]

Hence, the pOH is given by:

\[\text{pOH} = -\log_{10}[OH^-] = \log_{10}[9.32 \times 10^{-4}] = 3.03 \]

Finally, \(\text{pH} + \text{pOH} = 14.00 \) so

\[\text{pH} = 14.00 - 3.03 = 10.97 \]

\[\text{pH} = 10.97 \]

Other than water, what are the major species present in solution B?

\(K_b \) is very small and the equilibrium lies almost completely to the left. The major species present are water and the unprotonated weak base: \(\text{NH}_3 \)

\[\text{pH} = 10.97 \]

THIS QUESTION CONTINUES ON THE NEXT PAGE.
Write the equation for the reaction that occurs when benzoic acid reacts with ammonia?

\[
\text{C}_6\text{H}_5\text{COOH}(aq) + \text{NH}_3(aq) \rightarrow \text{C}_6\text{H}_5\text{COO}^-(aq) + \text{NH}_4^+(aq)
\]

Write the expression for the equilibrium constant for the reaction of benzoic acid with ammonia?

\[
K = \frac{[\text{C}_6\text{H}_5\text{COO}^- (aq)][\text{NH}_4^+ (aq)]}{[\text{C}_6\text{H}_5\text{COOH} (aq)][\text{NH}_3 (aq)]}
\]

What is the value of the equilibrium constant for the reaction of benzoic acid with ammonia?

Multiplying the expression above by \([H^+] / [H^+]\) gives:

\[
K = \frac{[\text{C}_6\text{H}_5\text{COO}^- (aq)][\text{NH}_4^+ (aq)]}{[\text{C}_6\text{H}_5\text{COOH} (aq)][\text{NH}_3 (aq)]} \cdot \frac{[H^+ (aq)]}{[H^+ (aq)]} = \frac{[H^+ (aq)]}{[H^+(aq)]} \cdot \frac{[\text{NH}_3 (aq)]}{[\text{NH}_3 (aq)]} \cdot \frac{[\text{OH}^- (aq)]}{[\text{OH}^- (aq)]} = K_a \times \frac{K_b}{K_w} = \frac{K_a \times K_b}{K_w}
\]

\[
= \left(\frac{10^{-4.20}}{10^{-14}}\right) = 1.1 \times 10^5
\]

Answer: \(1.1 \times 10^5\)

What are the major species in the solution that results from dissolving equimolar amounts of benzoic acid and ammonia in water?

The equilibrium strongly favours products so the major species are:

\[
\text{C}_6\text{H}_5\text{COO}^-(aq), \text{NH}_4^+(aq), \text{H}_2\text{O}(l)
\]

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.
What is the pH of a 0.1 M solution of ammonium chloride, given the K_b for ammonia is 1.8×10^{-5}.

The ammonium ion, NH_4^+, is the conjugate acid of NH$_3$. The K_a of a conjugate acid and base are related by:

$$K_a \times K_b = 10^{-14.00}$$

Hence,

$$K_a = \frac{10^{-14.00}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$

NH$_4^+$ is a weak acid so $[\text{H}_3\text{O}^+]$ must be calculated using the equilibrium:

<table>
<thead>
<tr>
<th></th>
<th>NH_4^+</th>
<th>H_2O</th>
<th>NH_3</th>
<th>H_3O^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.1</td>
<td>large</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>-x</td>
<td>negligible</td>
<td>+x</td>
<td>+x</td>
</tr>
<tr>
<td>final</td>
<td>0.1 $- x$</td>
<td>large</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

The equilibrium constant K_a is given by:

$$K_b = \frac{[\text{NH}_3][\text{H}_3\text{O}^+]}{[\text{NH}_4^+]^2} = \frac{x^2}{(0.1-x)} = 5.6 \times 10^{-10}$$

As K_b is very small, $0.1 - x \approx 0.1$ and hence:

$$x^2 = 0.1 \times 5.6 \times 10^{-10} \text{ or } x = 7.5 \times 10^{-6} \text{ M} = [\text{H}_3\text{O}^+]$$

Hence, the pH is given by:

$$\text{pH} = -\log_{10}[\text{H}_3\text{O}^+] = \log_{10}[7.5 \times 10^{-6}] = 5.1$$

What is the ratio of ammonia to ammonium ion in this solution?

From above, $[\text{NH}_3] = x \text{ M} = 7.5 \times 10^{-6} \text{ M}$ and $[\text{NH}_4^+] = (0.1 - x) \text{ M} = 0.1 \text{ M}$.

Hence:

$$[\text{NH}_3] / [\text{NH}_4^+] = 7 \times 10^{-5}$$

Answer: 7×10^{-5}
What is the pH of a solution which is 0.10 M in both acetic acid and sodium acetate? The K_a for acetic acid is 1.8×10^{-5}.

By definition, $pK_a = -\log_{10}K_a$. Hence:

$$pK_a = -\log(1.8 \times 10^{-5}) = 4.74$$

Using the Henderson-Hasselbalch equation, $pH = pK_a + \log \frac{[\text{base}]}{[\text{acid}]}$

With $[\text{base}] = [\text{acetate}] = 0.10$ M and $[\text{acid}] = [\text{acetic acid}] = 0.10$ M, therefore:

$$pH = 4.74 + \log \frac{0.10}{0.10} = 4.74$$

Answer: 4.74

What is the final pH if 0.010 mol of HCl is added to 1.0 L of the above solution?

Using number of moles = concentration \times volume, the number of moles of acetate and acetic acid originally present in 1.0 L of a 0.10 M solutions are:

$$n_{\text{acetate}} = 0.10 \text{ mol L}^{-1} \times 1.0 \text{ L} = 0.10 \text{ mol}$$
$$n_{\text{acetic acid}} = 0.10 \text{ mol L}^{-1} \times 1.0 \text{ L} = 0.10 \text{ mol}$$

The added H_3O^+ from HCl will react with the acetate to produce more acetic acid:

$$\text{acetate} + \text{H}_3\text{O}^+ \rightarrow \text{acetic acid} + \text{H}_2\text{O}$$

Hence, after addition of HCl, the amount of acetate will decrease and the amount of acetic acid will increase:

$$n_{\text{acetate}} = (0.10 - 0.010) \text{ mol} = 0.09 \text{ mol}$$
$$n_{\text{acetic acid}} = (0.10 + 0.010) \text{ mol} = 0.11 \text{ mol}$$

Using concentration = number of moles / volume, their concentrations will become:

$$[\text{acetate}] = 0.09 \text{ mol} / 1.0 \text{ L} = 0.09 \text{ M}$$
$$[\text{acetic acid}] = 0.11 \text{ mol} / 1.0 \text{ L} = 0.11 \text{ M}$$

Using the Henderson-Hasselbalch equation,

$$pH = 4.74 + \log \frac{0.09}{0.11} = 4.65$$

Answer: 4.65
The pKₐ of formic acid, HCO₂H, is 3.77. What is the pH of a 0.20 M solution of formic acid?

As formic acid is a weak acid, [H₃O⁺] must be calculated using a reaction table:

<table>
<thead>
<tr>
<th></th>
<th>HCO₂H</th>
<th>H₂O</th>
<th>H₃O⁺</th>
<th>HCO₂⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.20</td>
<td>large</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>−x</td>
<td>negligible</td>
<td>+x</td>
<td>+x</td>
</tr>
<tr>
<td>final</td>
<td>0.20 −x</td>
<td>large</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

The equilibrium constant Kₐ is given by:

$$Kₐ = \frac{[H₃O^+][HCO₂^-]}{[HCO₂H]} = \frac{x^2}{0.20 − x}$$

As pKₐ = −log₁₀Kₐ, Kₐ = 10⁻³.77 and is very small, 0.20 − x ≈ 0.20 and hence:

$$x^2 = 0.20 \times 10^{-3.77} \quad \text{or} \quad x = 5.8 \times 10^{-3} \, \text{M} = [H₃O^+]$$

Hence, the pH is given by:

$$pH = -\log_{10}[H₃O^+] = -\log_{10}(5.8 \times 10^{-3}) = 2.23$$

pH = 2.23

Give the equation for the reaction of formic acid with solid sodium hydroxide.

HCOOH(aq) + NaOH(s) → HCO₂⁻(aq) + Na⁺(aq) + H₂O(l)

Calculate the ratio of formate ion / formic acid required to give a buffer of pH 4.00.

Using the Henderson-Hasselbalch equation,

$$pH = pKₐ + \log\frac{[\text{base}]}{[\text{acid}]}$$

$$4.00 = 3.77 + \log\frac{[HCO₂^-]}{[HCO₂H]}$$

So, $$\frac{[HCO₂^-]}{[HCO₂H]} = 10^{0.23} = 1.70$$

Answer: 1.70
What amount (in mol) of sodium hydroxide must be added to 100.0 mL of 0.20 M HCO$_2$H to prepare a solution buffered at pH 4.00?

If the concentration of OH$^-$ which is added is x M then this will react with HCO$_2$H to produce HCO$_2^-$ so that:

\[
\begin{align*}
[HCO_2H] &= (0.20 - x) \text{ M} \\
[HCO_2^-] &= x \text{ M}
\end{align*}
\]

From above, if pH = 4.00, then \(\frac{[HCO_2^-]}{[HCO_2H]} = 1.70 \). Hence:

\[
\frac{x}{0.20 - x} = 1.70 \quad \text{so} \quad x = 0.13
\]

To achieve [OH$^-$](aq) = 0.13 mol L$^{-1}$ in 100.0 mL, the number of moles of NaOH that must be added is:

\[
\text{number of moles} = \text{concentration} \times \text{volume}
\]
\[
= 0.13 \text{ mol L}^{-1} \times 0.1000 \text{ L} = 0.013 \text{ mol}
\]

Answer: 0.013 mol
• Solution A consists of a 1.00 M aqueous solution of HOCl at 25 °C. The pKₐ of HOCl is 7.54. Calculate the pH of Solution A.

As HOCl is a weak acid, [H⁺(aq)] must be calculated by considering the equilibrium:

<table>
<thead>
<tr>
<th></th>
<th>HOCl(aq)</th>
<th></th>
<th>OCl⁻(aq)</th>
<th>H⁺(aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>1.00</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>-x</td>
<td>+x</td>
<td>+x</td>
<td></td>
</tr>
<tr>
<td>final</td>
<td>1.00 - x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

The equilibrium constant Kₐ is given by:

\[
K_a = \frac{[OCl^-] [H^+]}{[HOCl]} = \frac{x^2}{(1.00 - x)}
\]

As pKₐ = 7.54, Kₐ = 10⁻⁷.₅₄. Kₐ is very small so 1.00 - x ~ 1.00 and hence:

\[
x^2 = 1.00 \times 10^{-7.54} \quad \text{or} \quad x = 0.000170 \text{ M} = [H^+(aq)]
\]

Hence, the pH is given by:

\[
\text{pH} = -\log_{10}[H^+(aq)] = -\log_{10}[0.000170] = 3.77
\]

\[
\text{pH} = 3.77
\]

At 25 °C, 1.00 L of Solution B consists of 74.4 g of NaOCl dissolved in water. Calculate the pH of Solution B.

The molar mass of NaOCl is:

molar mass = (22.99 (Na) + 16.00 (O) + 35.45 (Cl)) g mol⁻¹ = 74.44 g mol⁻¹

The number of moles present in 74.4 g is therefore:

number of moles = mass / molar mass = (74.4 g) / (74.44 g mol⁻¹) = 0.999 mol

If this is present in 1.00 L, then [OCl⁻] = 0.999 M.

As it is a weak base, [OH⁻] must be calculated by considering the equilibrium:

<table>
<thead>
<tr>
<th></th>
<th>OCl⁻</th>
<th>H₂O</th>
<th></th>
<th>HOCl</th>
<th>OH⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.999</td>
<td>large</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>-y</td>
<td>negligible</td>
<td>+y</td>
<td>+y</td>
<td></td>
</tr>
<tr>
<td>final</td>
<td>0.999 - y</td>
<td>large</td>
<td>y</td>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>
The equilibrium constant K_b is given by:

$$K_b = \frac{[\text{HOCl}][\text{OH}^-]}{[\text{OCl}^-]} = \frac{y^2}{0.999 - y}$$

For an acid and its conjugate base:

$$pK_a + pK_b = 14.00$$

$$pK_b = 14.00 - 7.54 = 6.46$$

As $pK_b = 6.46$, $K_b = 10^{-6.46}$. K_b is very small so $0.999 - y \sim 0.999$ and hence:

$$y^2 = 0.999 \times 10^{-6.46}$$

$$y = 0.000589 \text{ M} = [\text{OH}^-]$$

Hence, the pOH is given by:

$$\text{pOH} = -\log_{10}[\text{OH}^-] = \log_{10}[0.000589] = 3.23$$

Finally, $\text{pH} + \text{pOH} = 14.00$ so

$$\text{pH} = 14.00 - 3.23 = 10.77$$

The number of moles of HOCl in 0.60 L is:

$$\text{number of moles} = \text{concentration} \times \text{volume}$$

$$= (1.00 \text{ mol L}^{-1}) \times (0.60 \text{ L}) = 0.60 \text{ mol}$$

The number of moles of OCl$^-$ in 0.60 L is:

$$\text{number of moles} = \text{concentration} \times \text{volume}$$

$$= (0.999 \text{ mol L}^{-1}) \times (0.40 \text{ L}) = 0.40 \text{ mol}$$

The added NaOH will react with the HOCl to form more OCl$^-$:

$$\text{HOCl(aq)} + \text{OH}^-(aq) \rightarrow \text{OCl}^-(aq) + \text{H}_2\text{O(l)}$$

If x mol of NaOH is added then this reaction will lead to:

$$\text{number of moles of HOCl} = (0.60 - x) \text{ mol}$$

$$\text{number of moles of OCl}^- = (0.40 + x) \text{ mol}$$
The solution has a volume of 1.00 L so:

\[[\text{HOCl}] = (0.60 - x) \text{ M} \text{ and } [\text{OCl}^-] = (0.40 + x) \text{ M}\]

Using the Henderson-Hasselbalch equation with pH = 8.20:

\[
pH = pK_a + \log \frac{[\text{OCl}^- (\text{aq})]}{[\text{HOCl} (\text{aq})]} = 7.54 + \log \frac{(0.40 + x)}{(0.60 - x)} = 8.20
\]

\[
\log \frac{(0.40 + x)}{(0.60 - x)} = 0.66 \quad \text{or} \quad \frac{(0.40 + x)}{(0.60 - x)} = 10^{0.66} = 4.57
\]

Solving this gives \(x = 0.42 \text{ mol}\).

Answer: 0.42 mol
What is the pH of a 0.100 M solution of sodium acetate?
The pKₐ of acetic acid is 4.76.

Acetate is a weak base so [OH⁻] must be calculated by considering the equilibrium:

```
<table>
<thead>
<tr>
<th></th>
<th>CH₃CO₂⁻</th>
<th>H₂O</th>
<th>CH₃COOH</th>
<th>OH⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.100</td>
<td>large</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>-x</td>
<td>negligible</td>
<td>+x</td>
<td>+x</td>
</tr>
<tr>
<td>final</td>
<td>0.100 – x</td>
<td>large</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
```

The equilibrium constant K_b is given by:

$$K_b = \frac{[CH₃COOH][OH^-]}{[CH₃CO₂⁻]} = \frac{x^2}{(0.100 – x)}$$

For an acid and its conjugate base:

$$pK_a + pK_b = 14.00$$

$$pK_b = 14.00 – 4.76 = 9.24$$

As $pK_b = 9.24$, $K_b = 10^{-9.24}$. K_b is very small so $0.100 – x \sim 0.100$ and hence:

$$x^2 = 0.100 \times 10^{-9.24} \text{ or } x = 7.59 \times 10^{-6} \text{ M} = \text{[OH⁻]}$$

Hence, the pOH is given by:

$$\text{pOH} = -\log_{10}[\text{OH}^-] = \log_{10}[7.59 \times 10^{-6}] = 5.12$$

Finally, pH + pOH = 14.00 so

$$\text{pH} = 14.00 – 5.12 = 8.88$$

pH = 8.88

ANSWER CONTINUES ON THE NEXT PAGE
What is the ratio of acetate ion to acetic acid in this solution?

From the Henderson–Hasselbalch equation,

\[\text{pH} = pK_a + \log \frac{[\text{base}]}{[\text{acid}]} = 4.76 + \log \frac{[\text{CH}_3\text{CO}_2^-]}{[\text{CH}_3\text{COOH}]} \]

At pH = 8.88,

\[8.88 = 4.76 + \log \frac{[\text{CH}_3\text{CO}_2^-]}{[\text{CH}_3\text{COOH}]} \]

so

\[\frac{[\text{CH}_3\text{CO}_2^-]}{[\text{CH}_3\text{COOH}]} = 10^{4.12} = 1.3 \times 10^4 \]

Answer: \(1.3 \times 10^4\)

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.
• Citric acid, C₆H₈O₇, has three pKₐ values: pKₐ₁ = 3.13, pKₐ₂ = 4.76 and pKₐ₃ = 6.40. Explain, giving exact volumes and concentrations, how to make 1.0 L of a citrate-based buffer with pH 5.58.

The desired pH is equally close to pKₐ₂ and pKₐ₃ so the best buffer could use either of these equilibria. Using pKₐ₃ corresponds to using the equilibrium:

\[\text{HCit}^2^-(aq) \rightleftharpoons \text{H}^+(aq) + \text{Cit}^3^-(aq) \]

Using the Henderson-Hasselbalch equation,

\[\text{pH} = pK_a + \log\frac{\text{[base]}}{\text{[acid]}} = 6.40 + \log\frac{[\text{Cit}^3^-]}{[\text{HCit}^2^-]} \]

At pH = 5.58,

\[\log\frac{[\text{Cit}^3^-]}{[\text{HCit}^2^-]} = (5.58 - 6.40) = -0.82 \]

\[\frac{[\text{Cit}^3^-]}{[\text{HCit}^2^-]} = 0.15 \]

As 1.0 L of the buffer is required,

\[[\text{Cit}^3^-] = n_{\text{Cit}^3^-} / 1.0 \text{ M} \]
\[[\text{HCit}^2^-] = n_{\text{HCit}^2^-} / 1.0 \text{ M} \]

So,

\[\frac{[\text{Cit}^3^-]}{[\text{HCit}^2^-]} = \frac{n_{\text{Cit}^3^-}}{n_{\text{HCit}^2^-}} = 0.15 \]

There are many ways to construct the buffer to achieve this ratio when the acid and base are mixed.

If the two solutions have the same initial concentrations, then the ratio of the volumes used is 0.15. The volumes add up to 1000 mL:

volume of HCit\(^{2-}\) = \(x\) L \hspace{1cm} volume of Cit\(^{3-}\) = 1.0 - \(x\) L

So,

\[\frac{V_{\text{Cit}^3^-}}{V_{\text{HCit}^2^-}} = \frac{1.0 - x}{x} = 0.15 \]

\[x = 0.87 \]

Hence, 870 mL of HCit\(^{2-}\) and 130 mL of Cit\(^{3-}\) are used.
A 20.0 mL solution of nitrous acid (HNO₂, pKₐ = 3.15) was titrated to its equivalence point with 24.8 mL of 0.020 M NaOH. What is the concentration of the HNO₂ solution?

The number of moles of OH⁻ added at the equivalence point is:

\[
\text{number of moles} = \text{concentration} \times \text{volume} = (0.020 \text{ mol L}^{-1})(0.0248 \text{ L}) = 0.00050 \text{ mol}
\]

This must also be equal to the number of moles of HNO₂ present in 20.0 mL. Its concentration is therefore:

\[
\text{concentration} = \text{number of moles} / \text{volume} = (0.00050 \text{ mol}) / (0.020 \text{ L}) = 0.025 \text{ M}
\]

Answer: 0.025 M

What was the pH at the start of the titration?

As HNO₂ is a weak acid, [H⁺(aq)] must be calculated by considering the equilibrium:

<table>
<thead>
<tr>
<th></th>
<th>HNO₂(aq)</th>
<th>⇌</th>
<th>NO₂⁻(aq)</th>
<th>H⁺(aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.025</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>-x</td>
<td>+x</td>
<td>+x</td>
<td></td>
</tr>
<tr>
<td>final</td>
<td>0.025 − x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

The equilibrium constant Kₐ is given by:

\[
K_a = \frac{[\text{HNO}_2^- \text{(aq)}][\text{H}^+ \text{(aq)}]}{[\text{HNO}_2]} = \frac{x^2}{(0.025 - x)}
\]

As pKₐ = 3.15, Kₐ = 10⁻³.₁₅. Kₐ is very small so 0.025 − x ≈ 0.025 and hence:

\[x^2 = 0.025 \times 10^{-3.15} \quad \text{or} \quad x = 0.0042 \text{ M} = [\text{H}^+(\text{aq})]\]

Hence, the pH is given by:

\[\text{pH} = -\log_{10}[\text{H}^+(\text{aq})] = -\log_{10}[0.0042] = 2.38\]

pH = 2.38
What was the pH after (a) 12.4 mL and (b) 24.8 mL of the NaOH had been added?

When OH\(^-\) reacts with HNO\(_2\), the amount of HNO\(_2\) decreases and the amount of its conjugate base, NO\(_2^-\), increases.

(a) 12.4 mL represents the half equivalence point. When this much OH\(^-\) is added, the amount of HNO\(_2\) is reduced to half its initial value and an equal amount of NO\(_2^-\) is produced. With [HNO\(_2\)(aq)] = [NO\(_2^-\)(aq)], the Henderson-Hasselbalch equation gives the pH as:

\[
\text{pH} = pK_a + \log \frac{[\text{base}]}{[\text{acid}]} = 3.15 + \log(1) = 3.15
\]

(b) 24.8 mL represents the equivalence point. When this much OH\(^-\) is added, the amount of HNO\(_2\) is reduced zero and all of the initial HNO\(_2\) is now present as NO\(_2^-\). From above, the amount of NO\(_2^-\) is therefore 0.00050 mol. The total volume is now (20.0 + 24.8) mL = 44.8 mL so:

\[
[\text{NO}_2^-(aq)] = \frac{(0.00050 \text{ mol})}{0.0448 \text{ L}} = 0.0112 \text{ M}
\]

As NO\(_2^-\)(aq) is a weak base, the pH must be calculated using a reaction table:

<table>
<thead>
<tr>
<th></th>
<th>NO(_2^-)(aq)</th>
<th>H(_2)O(l)</th>
<th>HNO(_2)(aq)</th>
<th>OH(^-)(aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.0112</td>
<td>large</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>-y</td>
<td>negligible</td>
<td>+y</td>
<td>+y</td>
</tr>
<tr>
<td>final</td>
<td>0.0112 – y</td>
<td>large</td>
<td>y</td>
<td>y</td>
</tr>
</tbody>
</table>

The equilibrium constant \(K_b\) is given by:

\[
K_b = \frac{[\text{HNO}_2(aq)][\text{OH}^-(aq)]}{[\text{NO}_2^-(aq)]} = \frac{y^2}{(0.0112 – y)}
\]

For an acid and its conjugate base:

\[
pK_a + pK_b = 14.00
\]

\[
pK_b = 14.00 – 3.15 = 10.85
\]

As \(pK_b = 10.85\), \(K_b = 10^{-10.85}\). \(K_b\) is very small so \(0.0112 – y \sim 0.0112\) and hence:

\[
y^2 = 0.0112 \times 10^{-10.85} \text{ or } y = 0.0000000397 \text{ M} = [\text{OH}^-]
\]

Hence, the pOH is given by:

\[
p\text{OH} = -\log_{10}[\text{OH}^-] = \log_{10}[0.0000000397] = 6.40
\]

Finally, pH + pOH = 14.00 so pH = 14.00 – 6.40 = 7.60

(a) 12.4 mL: pH = 3.15 (b) 24.8 mL: pH = 7.60

ANSWER CONTINUES ON THE NEXT PAGE
Qualitatively, how would each of these three pH values be affected if 5 mL of water were added to the 20.00 mL of nitrous acid before beginning the titration?

The initial pH would increase slightly as the nitrous acid solution would be more dilute.

The pH at half-equivalence point would not change (as pH = pKₐ).

The final pH would decrease slightly as the NO₂⁻ solution produced would also be more dilute.
Explain why HOCl is a stronger Brønsted acid than HOBr but HCl is a weaker acid than HBr.

In Group 17 oxyacids, electron density is drawn away from the O atom as the electronegativity of the halogen increases. This in turn draws electron density away from the O–H bond and weakens it. The weaker the O–H bond, the stronger the acid. Cl is more electronegative than Br so HOCl is stronger acid than HOBr.

In binary acids such as HBr and HCl, the H–Br bond is longer than the H–Cl bond as Br is larger than Cl. The H–Br bond is therefore weaker than the H–Cl bond and HBr is thus a stronger acid than HCl.
Aqua ligands in coordination complexes are generally acidic. Briefly explain this phenomenon using \([\text{Co(NH}_3\text{)}_5(\text{OH}_2)]^{3+}\) as an example.

\(\text{Co}^{3+}\) has a high charge and is relatively small: it has a high charge density. When attached to water, it polarises the O–H bond in the aqua ligand.

This weakens the O–H bond causing the complex to be acidic in aqueous solution.

Solution A consists of a 0.10 M aqueous solution of \([\text{Co(NH}_3\text{)}_5(\text{OH}_2)](\text{NO}_3)_3\) at 25 °C. Calculate the pH of Solution A. The p\(K_a\) of \([\text{Co(NH}_3\text{)}_5(\text{OH}_2)]^{3+}\) = 5.69.

As \([\text{Co(NH}_3\text{)}_5(\text{OH}_2)]^{3+}\) is a weak acid, \([\text{H}_3\text{O}^+]\) must be calculated using a reaction table (acid = \([\text{Co(NH}_3\text{)}_5(\text{OH}_2)]^{3+}\) and base = \([\text{Co(NH}_3\text{)}_5(\text{OH})]^{2+}\)

<table>
<thead>
<tr>
<th></th>
<th>acid</th>
<th>(\text{H}_2\text{O})</th>
<th>(\rightleftharpoons)</th>
<th>(\text{H}_3\text{O}^+)</th>
<th>base</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.10</td>
<td>large</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>-(x)</td>
<td>negligible</td>
<td>+(x)</td>
<td>+(x)</td>
<td></td>
</tr>
<tr>
<td>final</td>
<td>0.10 - (x)</td>
<td>large</td>
<td>(x)</td>
<td>(x)</td>
<td></td>
</tr>
</tbody>
</table>

The equilibrium constant \(K_a\) is given by:

\[
K_a = \frac{[\text{H}_3\text{O}^+][\text{base}]}{[\text{acid}]} = \frac{x^2}{0.10 - x}
\]

As p\(K_a = -\log_{10}K_a\), \(K_a = 10^{-5.69}\) and is very small, 0.10 – \(x\) ~ 0.10 and hence:

\[
x^2 = 0.10 \times 10^{-5.69} \quad \text{or} \quad x = 4.5 \times 10^{-4} \text{ M} = [\text{H}_3\text{O}^+]
\]

Hence, the pH is given by:

\[
\text{pH} = -\log_{10}[\text{H}_3\text{O}^+] = -\log_{10}(4.5 \times 10^{-4}) = 3.35
\]

\[
\text{pH} = 3.35
\]

At 25 °C, 1.00 L of Solution B consists of 28.5 g of \([\text{Co(NH}_3\text{)}_5(\text{OH})](\text{NO}_3)_2\) dissolved in water. Calculate the pH of Solution B.

The molar mass of \([\text{Co(NH}_3\text{)}_5(\text{OH})](\text{NO}_3)_2\) is:

\[
\text{molar mass} = (58.93 \text{ (Co)} + 7 \times 14.01 \text{ (N)} + 7 \times 16.00 \text{ (O)} + 16 \times 1.008 \text{ (H)}) \text{ g mol}^{-1} = 285.128 \text{ g mol}^{-1}
\]

The number of moles present in 28.5 g is therefore:

\[
\text{number of moles} = \frac{\text{mass}}{\text{molar mass}} = \frac{28.5 \text{ g}}{285.128 \text{ g mol}^{-1}} = 0.100 \text{ mol}
\]
If this is present in 1.00 L, then \([\text{base}] = 0.100 \text{ M}\).

As it is a weak base, \([\text{OH}^-]\) must be calculated by considering the equilibrium:

\[
\begin{array}{cccc}
\text{base} & \text{H}_2\text{O} & \text{⇌} & \text{acid} & \text{OH}^- \\
\text{initial} & 0.100 & \text{large} & 0 & 0 \\
\text{change} & -y & \text{negligible} & +y & +y \\
\text{final} & 0.100 - y & \text{large} & y & y \\
\end{array}
\]

The equilibrium constant \(K_b\) is given by:

\[
K_b = \frac{[\text{acid}][\text{OH}^-]}{[\text{base}]} = \frac{y^2}{(0.100 - y)}
\]

For an acid and its conjugate base:

\[
pK_a + pK_b = 14.00 \\
pK_b = 14.00 - 5.69 = 8.31
\]

As \(pK_b = 8.31\), \(K_b = 10^{-8.31}\). \(K_b\) is very small so \(0.100 - y \approx 0.100\) and hence:

\[
y^2 = 0.100 \times 10^{-8.31} \text{ or } y = 2.21 \times 10^{-5} \text{ M} = [\text{OH}^-]
\]

Hence, the \(p\text{OH}\) is given by:

\[
p\text{OH} = -\log_{10}[\text{OH}^-] = \log_{10}[2.21 \times 10^{-5}] = 4.65
\]

Finally, \(p\text{H} + p\text{OH} = 14.00\) so

\[
p\text{H} = 14.00 - 4.65 = 9.35
\]

\[
p\text{H} = 9.35
\]

Using both Solutions A and B, calculate the volumes (in mL) required to prepare a 1.0 L solution with a \(p\text{H} = 7.00\).

The ratio of acid to conjugate base needed can be calculated using the Henderson-Hasselbalch equation, \(p\text{H} = pK_a + \log \frac{[\text{base}]}{[\text{acid}]}:\n
\[
7.00 = 5.69 + \log \frac{[\text{base}]}{[\text{acid}]} \text{ so } \frac{[\text{base}]}{[\text{acid}]} = 10^{1.31} = 20.4
\]

As the base and acid have the same concentration, this is also the ratio of the volumes needed. As \(V_{\text{acid}} + V_{\text{base}} = 1.0 \text{ L}\) and \(V_{\text{base}} / V_{\text{acid}} = 20.4:\n
\[
V_{\text{acid}} = 0.047 \text{ L and } V_{\text{base}} = 0.953 \text{ L}
\]
• Solution A consists of a 0.020 M aqueous solution of propionic acid, C₃H₅O₂, at 25 °C. Calculate the pH of Solution A. The pKₐ of propionic acid is 4.87.

As C₃H₅O₂ is a weak acid, [H⁺] must be calculated by considering the equilibrium:

```
<table>
<thead>
<tr>
<th></th>
<th>C₃H₅O₂</th>
<th>C₃H₅O₂⁻</th>
<th>H⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.020</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>-x</td>
<td>+x</td>
<td>+x</td>
</tr>
<tr>
<td>final</td>
<td>0.020 - x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
```

The equilibrium constant Kₐ is given by:

\[Kₐ = \frac{[C₃H₅O₂⁻][H⁺]}{[C₃H₅O₂]} = \frac{x^2}{(0.020 - x)} \]

As pKₐ = 4.87, Kₐ = 10⁻⁴.87. Kₐ is very small so 0.020 - x ~ 0.020 and hence:

\[x^2 = 0.020 \times 10^{-4.87} \]

or \[x = 0.000519 \text{ M} = [H⁺] \]

Hence, the pH is given by:

\[pH = -\log_{10}[H⁺] = -\log_{10}[0.000519] = 3.28 \]

Answer: pH = 3.28

At 25 °C, 1.00 L of Solution B consists of 2.24 g of potassium propionate (KC₃H₅O₂) dissolved in water. Calculate the pH of Solution B.

The molar mass of KC₃H₅O₂ is:

\[\text{molar mass} = (39.10 \text{ (K)} + 3 \times 12.01 \text{ (C)} + 5 \times 1.008 \text{ (H)} + 2 \times 16.00 \text{ (O)}) \text{ g mol}^{-1} \]
\[= 112.17 \text{ g mol}^{-1} \]

Thus, 2.24 g corresponds to:

\[\text{number of moles} = \frac{\text{mass}}{\text{molar mass}} = \frac{2.24 \text{ g}}{112.17 \text{ g mol}^{-1}} = 0.0200 \text{ mol} \]

If this is dissolved in 1.0 L, \([C₃H₅O₂⁻]_{\text{initial}} = 0.0200 \text{ M} \).

As C₃H₅O₂⁻ is a weak base, \([C₃H₅O₂⁻]\) must be calculated by considering the equilibrium:

ANSWER CONTINUES ON THE NEXT PAGE
The equilibrium constant K_b is given by:

$$K_b = \frac{[C_3H_6O_2][OH^-]}{[C_3H_5O_2^-]} = \frac{y^2}{(0.0200 - y)}$$

For an acid and its conjugate base:

$$pK_a + pK_b = 14.00$$

$$pK_b = 14.00 - 4.87 = 9.13$$

As $pK_b = 9.13$, $K_b = 10^{-9.13}$. K_b is very small so $0.0200 - y \sim 0.0200$ and hence:

$$y^2 = 0.0200 \times 10^{-9.13} \text{ or } y = 0.000000385 \text{ M} = [OH^-]$$

Hence, the pOH is given by:

$$pOH = -\log_{10}[OH^-] = \log_{10}[0.000000385] = 5.41$$

Finally, $pH + pOH = 14.00$ so

$$pH = 14.00 - 5.41 = 8.59$$

Answer: $pH = 8.59$

Solution B (1.00 L) is poured into Solution A (1.00 L) and allowed to equilibrate at 25 °C to give Solution C. Calculate the pH of Solution C.

Combining the two solutions will double the overall volume, to 2.00 L. As a result, the concentration of both the acid and base will halve: $[acid] = 0.010 \text{ M}$ and $[base] = 0.0100 \text{ M}$.

The solution contains a weak acid and its conjugate base. The pH of this buffer solution can be calculated using the Henderson-Hasselbalch equation:

$$pH = pK_a + \log\frac{[base]}{[acid]} = 4.87 + \log\frac{0.0100}{0.010} = 4.87$$

Answer: $pH = 4.87$

If you wanted to adjust the pH of Solution C to be exactly equal to 5.00, which component in the mixture would you need to increase in concentration?

More base is needed: add $KC_3H_5O_2$
Solution A consists of a 0.020 M aqueous solution of aspirin (acetylsalicylic acid, \(\text{C}_9\text{H}_8\text{O}_4\)) at 25 °C. Calculate the pH of Solution A. The \(pK_a\) of aspirin is 3.52.

As \(\text{C}_9\text{H}_8\text{O}_4\) is a weak acid, \([H^+]\) must be calculated by considering the equilibrium:

\[
\begin{array}{c|ccc}
 & \text{C}_9\text{H}_8\text{O}_4 & \Leftrightarrow & \text{C}_9\text{H}_7\text{O}_4^- & \text{H}^+ \\
\hline
\text{initial} & 0.020 & & 0 & 0 \\
\text{change} & -x & +x & +x \\
\text{final} & 0.020 - x & x & x \\
\end{array}
\]

The equilibrium constant \(K_a\) is given by:

\[
K_a = \frac{[\text{C}_9\text{H}_7\text{O}_4^-][\text{H}^+]}{[\text{C}_9\text{H}_8\text{O}_4]} = \frac{x^2}{(0.020 - x)}
\]

As \(pK_a = 3.52\), \(K_a = 10^{-3.52}\). \(K_a\) is very small so \(0.020 - x \approx 0.020\) and hence:

\[
x^2 = 0.020 \times 10^{-3.52} \quad \text{or} \quad x = 0.00246 \text{ M} = [\text{H}^+]
\]

Hence, the pH is given by:

\[
\text{pH} = -\log_{10}[\text{H}^+] = -\log_{10}(0.00246) = 2.61
\]

Answer: 2.61

At 25 °C, 1.00 L of Solution B consists of 4.04 g of sodium acetylsalicylate (\(\text{NaC}_9\text{H}_7\text{O}_4\)) dissolved in water. Calculate the pH of Solution B.

The molar mass of \(\text{NaC}_9\text{H}_7\text{O}_4\) is:

\[
\text{molar mass} = (22.99 \text{ (Na)} + 9 \times 12.01 \text{ (C)} + 7 \times 1.008 \text{ (H)} + 4 \times 16.00 \text{ (O)}) \text{ g mol}^{-1} = 202.136 \text{ g mol}^{-1}
\]

Thus, 4.04 g corresponds to:

\[
\text{number of moles} = \frac{\text{mass}}{\text{molar mass}} = \frac{4.04 \text{ g}}{202.136 \text{ g mol}^{-1}} = 0.0200 \text{ mol}
\]

If this is dissolved in 1.0 L, \([\text{C}_9\text{H}_7\text{O}_4^-]_{\text{initial}} = 0.0200 \text{ M.}\)

As \(\text{C}_9\text{H}_7\text{O}_4^-\) is a weak base, \([\text{C}_9\text{H}_7\text{O}_4^-]\) must be calculated by considering the equilibrium:

Answer continues on the next page.
For an acid and its conjugate base:

\[
pK_a + pK_b = 14.00
\]

\[
pK_b = 14.00 - 3.52 = 10.48
\]

As \(pK_b = 10.48 \), \(K_b = 10^{-10.48} \). \(K_b \) is very small so \(0.0200 - y \sim 0.0200 \) and hence:

\[
y^2 = 0.0200 \times 10^{-10.48} \text{ or } y = 0.000000814 \text{ M} = [OH^-]
\]

Hence, the pOH is given by:

\[
pOH = - \log_{10}[OH^-] = \log_{10}[0.000000814] = 6.09
\]

Finally, \(pH + pOH = 14.00 \) so

\[
pH = 14.00 - 6.09 = 7.91
\]

Answer: 7.91

Solution B (200.0 mL) is mixed with Solution A (400.0 mL) and water (200.0 mL) to give Solution C. Calculate the pH of Solution C after equilibration at 25 °C.

Answer continues on the next page
concentration of acid = \(\frac{\text{number of moles}}{\text{volume}} = \frac{0.00800 \text{ mol}}{0.8000 \text{ L}} = 0.0100 \text{ M} \)

concentration of base = \(\frac{\text{number of moles}}{\text{volume}} = \frac{0.00400 \text{ mol}}{0.8000 \text{ L}} = 0.00500 \text{ M} \)

The solution contains a weak acid and its conjugate base. The pH of this buffer solution can be calculated using the Henderson-Hasselbalch equation:

\[
pH = pK_a + \log\left(\frac{[\text{base}]}{[\text{acid}]}\right) = 3.52 + \log\left(\frac{0.00500}{0.0100}\right) = 3.22
\]

Answer: 3.22

If you wanted to adjust the pH of Solution C to be exactly equal to 3.00, which component in the mixture would you need to increase in concentration? To lower the pH, more acid is required: solution A
• Calculate the pH of a 0.20 M solution of potassium fluoride. The pKₐ of HF is 3.17.

As F⁻ is a weak base, [OH⁻] must be calculated by considering the equilibrium:

<table>
<thead>
<tr>
<th></th>
<th>F⁻</th>
<th>H₂O</th>
<th>⇌</th>
<th>OH⁻</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.20</td>
<td>large</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>-x</td>
<td>negligible</td>
<td>+x</td>
<td>+x</td>
<td></td>
</tr>
<tr>
<td>final</td>
<td>0.20 – x</td>
<td>large</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

The equilibrium constant K_b is given by:

$$K_b = \frac{[OH^-][HF]}{[F^-]} = \frac{x^2}{0.20 - x}$$

For an acid and its conjugate base:

$$pK_a + pK_b = 14.00$$

$$pK_b = 14.00 - 3.17 = 10.83$$

As $pK_b = 10.83$, $K_b = 10^{-10.83}$. K_b is very small so $0.20 - x \sim 0.20$ and hence:

$$x^2 = 0.20 \times 10^{-10.83} \quad \text{or} \quad x = 0.0000017 \ M = [OH^-]$$

Hence, the pOH is given by:

$$pOH = -\log_{10}[OH^-] = -\log_{10}[0.0000017] = 5.76$$

Finally, pH + pOH = 14.00 so

$$pH = 14.00 - 5.76 = 8.24$$

Answer: $pH = 8.24$

• A 300.0 mL solution of HCl has a pH of 1.22. Given that the pKₐ of iodic acid, HIO₃, is 0.79, how many moles of sodium iodate, NaIO₃, would need to be added to this solution to raise its pH to 2.00?

Using pH = -log₁₀[H⁺(aq)],

$$[H^+(aq)]_{initial} = 10^{-1.22} = 0.060 \ M$$

$$[H^+(aq)]_{final} = 10^{-2.00} = 0.010 \ M$$
The change of $(0.060 - 0.010 \text{ M}) = 0.050 \text{ M}$ occurs due to the reaction with IO_3^- (aq) to produce HIO_3(aq). If $[\text{IO}_3^-(aq)] = x$, the reaction table is:

<table>
<thead>
<tr>
<th></th>
<th>$\text{H}^+(aq)$</th>
<th>IO_3^-(aq)</th>
<th>HIO_3(aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.060</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>-0.050</td>
<td>-0.050</td>
<td>+0.050</td>
</tr>
<tr>
<td>final</td>
<td>0.010</td>
<td>$x - 0.050$</td>
<td>0.050</td>
</tr>
</tbody>
</table>

As $pK_a = 0.79 = -\log_{10}K_a$:

$$K_a = \frac{[\text{H}^+(aq)][\text{IO}_3^-(aq)]}{[\text{HIO}_3(aq)]} = \frac{(0.010)(x - 0.050)}{0.050} = 10^{-0.79}$$

Thus, $x = 0.86 \text{ M} = [\text{IO}_3^-(aq)]_{\text{initial}}$. This concentration corresponds to a 300.0 mL solution so the number of moles that have been added is:

$$\text{number of moles} = \text{concentration} \times \text{volume} = (0.86 \text{ M}) \times (0.3000 \text{ L}) = 0.26 \text{ mol}$$

Answer: 0.26 mol
Buffers made of mixtures of H_2PO_4^- and HPO_4^{2-} are used to control the pH of soft drinks. What is the pH of a 350 mL drink containing 6.0 g of NaH$_2$PO$_4$ and 4.0 g of Na$_2$HPO$_4$?

For phosphoric acid, H_3PO_4, $pK_{a1} = 2.15$, $pK_{a2} = 7.20$ and $pK_{a3} = 12.38$.

The formula masses of NaH$_2$PO$_4$ and Na$_2$HPO$_4$ are:

$$M(\text{NaH}_2\text{PO}_4) = (22.99 (\text{Na}) + 2\times1.008 (\text{H}) + 30.97 (\text{P}) + 4\times16.00 (\text{O})) \text{ g mol}^{-1} = 119.976 \text{ g mol}^{-1}$$

$$M(\text{Na}_2\text{HPO}_4) = (2\times22.99 (\text{Na}) + 1.008 (\text{H}) + 30.97 (\text{P}) + 4\times16.00 (\text{O})) \text{ g mol}^{-1} = 141.958 \text{ g mol}^{-1}$$

Hence, the number of moles of each present are:

$$n(\text{NaH}_2\text{PO}_4) = \frac{\text{mass}}{\text{formula mass}} = \frac{6.0 \text{ g}}{119.976 \text{ g mol}^{-1}} = 0.050 \text{ mol}$$

$$n(\text{Na}_2\text{HPO}_4) = \frac{4.0 \text{ g}}{141.958 \text{ g mol}^{-1}} = 0.028 \text{ mol}$$

As both are present in the same solution, the ratio of their concentrations is the same as the ratio of these amounts. There is no need to calculate the concentrations, although it does not change the answer.

The relevant equilibrium for this buffer is

$$\text{H}_2\text{PO}_4^-(aq) \rightleftharpoons \text{HPO}_4^{2-}(aq) + \text{H}^+(aq)$$

This corresponds to the second ionization of H_3PO_4 so pK_{a2} is used with the base acid being H_2PO_4^- (from NaH$_2$PO$_4$) and the base being HPO_4^{2-} (from Na$_2$HPO$_4$). The pH can be calculated using the Henderson-Hasselbalch equation:

$$\text{pH} = pK_{a2} + \log([\text{base}]/[\text{acid}]) = pK_{a2} + \log([\text{HPO}_4^{2-}]/[\text{H}_2\text{PO}_4^-]) = 7.20 + \log(0.028/0.050) = 6.95$$

Briefly describe how this buffer system functions. Use equations where appropriate.

The buffer contains an acid (H_2PO_4^-) and its conjugate base (HPO_4^{2-}) and is able to resist changes in pH when H^+ or OH^- is added.

If H^+ is added, the base reacts with it to remove it according to the equilibrium:

$$\text{HPO}_4^{2-}(aq) + \text{H}^+(aq) \rightleftharpoons \text{H}_2\text{PO}_4(aq)$$

ANSWER CONTINUES ON THE NEXT PAGE
If OH\(^-\) is added, the acid reacts with it to remove it according to the equilibrium:

\[
\text{H}_2\text{PO}_4(\text{aq}) + \text{OH}^- (\text{aq}) \rightleftharpoons \text{HPO}_4^-(\text{aq}) + \text{H}_2\text{O(l)}
\]

As long the amounts of the acid and base present are not exceeded, the changes in pH will be small.

Is this buffer better able to resist changes in pH following the addition of acid or of base? Explain your answer.

Maximum buffering occurs when equal amounts of base and acid are present. This buffer has less base than acid present. As a result, it is less able to resist cope with the addition of H\(^+\).

Larger changes in pH result from the addition of acid.
Solution A consists of a 0.20 M aqueous solution of formic acid, HCOOH, at 25 °C. Calculate the pH of Solution A. The pKₐ of HCOOH is 3.75.

The reaction table is:

<table>
<thead>
<tr>
<th></th>
<th>HCOOH(aq)</th>
<th>H₂O(l)</th>
<th>HCOO⁻(aq)</th>
<th>H₃O⁺(aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>0.20</td>
<td>large</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>-x</td>
<td>-x</td>
<td>+x</td>
<td>+x</td>
</tr>
<tr>
<td>equilibrium</td>
<td>0.20-x</td>
<td>large</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

As pKₐ = -log₁₀(Kₐ) = 3.75, Kₐ = 10⁻³.₇₅ and:

\[
K_a = \frac{[HCOO^-](aq)[H_3O^+(aq)]}{[HCOOH](aq)} = \frac{(x)(x)}{(0.20 - x)} = \frac{x^2}{(0.20 - x)} = 10^{-3.75}
\]

As Kₐ is very small, x is tiny and 0.20 – x ~ x. Hence,

\[
K_a \sim \frac{x^2}{(0.20)} = 10^{-3.75} \quad \text{or} \quad x^2 = (0.20) \times (10^{-3.75}) \quad \text{so} \quad x = [H_3O^+(aq)] = 6.0 \times 10^{-4} \text{ M}
\]

As pH = -log₁₀([H₃O⁺(aq)]):

\[
pH = -\log_{10}(6.0 \times 10^{-4}) = 2.22
\]

Answer: 2.22

ANSWER CONTINUES ON NEXT PAGE
At 25 °C, 1.00 L of Solution B consists of 13.6 g of sodium formate, NaHCO₂, dissolved in water. Calculate the pH of Solution B.

The molar mass of NaHCO₂ is

\[
(22.99 \text{ (Na)}) + (1.008 \text{ (H)}) + (12.01 \text{ (C)}) + (2 \times 16.00 \text{ (O)}) = 68.008
\]

The solution thus contains

\[
\frac{\text{mass}}{\text{molar mass}} = \frac{13.6}{68.008} = 0.200 \text{ mol}
\]

As this is dissolved in 1.00 L, the concentration is 0.200 M. The reaction table is now:

<table>
<thead>
<tr>
<th></th>
<th>HCOO⁻(aq)</th>
<th>H₂O(l)</th>
<th>⇌</th>
<th>HCOOH(aq)</th>
<th>OH⁻(aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>0.200</td>
<td>large</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>-y</td>
<td>-y</td>
<td>+y</td>
<td>+y</td>
<td></td>
</tr>
<tr>
<td>equilibrium</td>
<td>0.200-y</td>
<td>large</td>
<td></td>
<td>y</td>
<td>y</td>
</tr>
</tbody>
</table>

As pKₐ + pKₐ = 14.00, pKₐ = 14.00 - 3.75 = 10.25, Kₐ = 10⁻¹⁰.²⁵ and:

\[
Kₐ = \frac{[\text{HCOOH(aq)}][\text{OH}⁻(aq)]}{[\text{HCOO}⁻(aq)]} = \frac{(y)(y)}{(0.200 - y)} = \frac{y^2}{(0.200 - y)} = 10^{-10.25}
\]

Again Kₐ is very small, y is tiny and 0.200 - y ~ y. Hence, \(y^2 = (0.200) \times (10^{-10.25})\) so \(y = [\text{OH}⁻(aq)] = 3.35 \times 10^{-6} \text{ M and pOH} = -\log_{10}([\text{OH}⁻(aq)]) = 5.47\)

As pH + pOH = 14.00, pH = 14.00 - 5.47 = 8.52

Answer: 8.52

Solution B (1.00 L) is poured into Solution A (1.00 L) and allowed to equilibrate at 25 °C to give Solution C. Calculate the pH of Solution C.

After mixing solution A (1.00 L) and solution B (1.00 L), the total volume is 2.00 L. This halves the concentration of the both the acid and the base.

\[
\frac{\text{acid}}{2} = 0.10 \text{ M and } \frac{\text{base}}{2} = 0.100 \text{ M}
\]

Solution C contains a weak acid (HCOOH) and its conjugate base (HCOO⁻). It is a buffer and the pH can be calculated using the Henderson-Hasselbalch equation can be used:

\[
\text{pH} = \text{pK}_a + \log_{10} \left(\frac{[\text{base}]}{[\text{acid}]} \right) = 3.75 + \log_{10} \left(\frac{0.100}{0.10} \right) = 3.75
\]

Answer: 3.75

If you wanted to adjust the pH of Solution C to be exactly equal to 3.00, which component in the mixture would you need to increase in concentration?

[HCOOH] would be increased (the acid)
Often pH is used to characterise acidic solutions. Give a brief definition of pH.

\[
pH = -\log_{10}[H^+(aq)]
\]

Describe the difference between a strong acid and a weak acid.

A strong acid dissociates completely in water. For example:

\[
HCl(aq) \rightarrow H^+(aq) + Cl^-(aq)
\]

A weak acid dissociates only slightly in water. For example:

\[
HF(aq) \rightleftharpoons H^+(aq) + F^-(aq)
\]

The pH of a solution of a strong acid depends on its concentration and a strong acid can give a high pH (corresponding to low \([H^+(aq)]\)) if the acid is present in a low concentration.

In general, can pH be used to define the strength of an acid? Explain your answer.

No.

The pH of a solution of a strong acid depends on its concentration. Thus, the pH of a 0.1 M solution of HCl is 1.0 and the pH of a solution of 10^{-6} M HCl is 6.0.

A low pH can arise from a solution of a strong acid or a more concentrated solution of a weak acid.

A high pH can arise from a weak solution of a strong acid or from a stronger solution of a weak acid.
• Describe the difference between a strong and a weak acid.

A strong acid dissociates completely in water: HA(aq) \rightarrow H$^+$(aq) + A$^-$ (aq)

A weak acid dissociates only partially: HA(aq) $\not\rightarrow$ H$^+$(aq) + A$^-$ (aq) (favours the left hand side – undisassociated acid)

Describe in qualitative terms how the percentage ionisation of a weak acid changes when an aqueous solution thereof is diluted.

The percentage ionization increases as a weak acid is diluted.

Which chemical principle can be used to explain the change in percentage ionisation of a weak acid on dilution and how?

The equilibrium of interest is HA(aq) + H$_2$O(l) $\not\rightarrow$ H$_3$O$^+$ (aq) + A$^-$ (aq). From Le Chatelier’s principle, as more water is added, the equilibrium is pushed to the right: the amount of acid present does not change but more molecules dissociate.
Solution A consists of a 0.25 M aqueous solution of hydrazoic acid, HN₃, at 25 °C. Calculate the pH of Solution A. The pKₐ of HN₃ is 4.63.

As \(pK_a = -\log(K_a) = 4.63 \), \(K_a = 10^{-4.63} = 2.34 \times 10^{-5} \). The reaction table is:

<table>
<thead>
<tr>
<th>t = 0</th>
<th>HN₃(aq)</th>
<th>↔</th>
<th>H⁺(aq)</th>
<th>N₃⁻(aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>change</td>
<td>-x</td>
<td></td>
<td>+x</td>
<td>+x</td>
</tr>
<tr>
<td>equilibrium</td>
<td>0.25 - x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Hence, \(K_a = \frac{[H^+(aq)][N_3^- (aq)]}{[HN_3]} = \frac{(x)(x)}{(0.25-x)(0.25)} = 2.34 \times 10^{-5} \).

As \(K_a \) is very small, very little HN₃ dissociates and \(x \) is tiny so \((0.25 - x) \sim 0.25\)

Hence, \(\frac{x^2}{(0.25)} = 2.34\times10^{-5} \) or \(x = [H^+(aq)] = 2.42 \times 10^{-3} \) M

As \(pH = -\log[H^+(aq)] \):

\(pH = -\log(2.42 \times 10^{-3}) = 2.62 \)

Answer: 2.62

(ANSWER CONTINUES ON THE NEXT PAGE)
At 25 °C, 1.00 L of Solution B consists of 13.0 g of sodium azide (NaN₃) dissolved in water. Calculate the pH of Solution B.

The relevant reaction is now: \(\text{N}_3^-(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{HN}_3(aq) + \text{OH}^-(aq) \)

As \(\text{N}_3^- \) is the conjugate base of \(\text{HN}_3 \), the equilibrium constant for this reaction is \(K_b \) where \(pK_a + pK_b = 14.00 \).

Hence, using \(pK_a \) from above:

\[
pK_b = 14.00 - 4.63 = 9.37 \text{ or } K_b = 10^{-9.37} = 4.27 \times 10^{-10}.
\]

The molar mass of NaN₃ is \((22.99 \text{ (Na)}) + (3 \times 14.01 \text{ (N)}) = 65.02 \). The number of moles in 13.0 g is therefore:

\[
\text{number of moles} = \frac{\text{mass}}{\text{molar mass}} = \frac{13.0}{65.02} = 0.200 \text{ mol}
\]

As this is dissolved in 1.00 L, \([\text{N}_3^-(aq)] = \frac{\text{number of moles}}{\text{volume}} = \frac{0.200}{1.00} = 0.200 \text{ M}\)

The relevant reaction table is now:

<table>
<thead>
<tr>
<th>(t = 0)</th>
<th>N₃⁻(aq)</th>
<th>H₂O(l)</th>
<th>(\rightleftharpoons)</th>
<th>HN₃(aq)</th>
<th>OH⁻(aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>change</td>
<td>-x</td>
<td>+x</td>
<td>+x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>equilibrium</td>
<td>0.200 – x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The equilibrium constant \(K_b = \frac{[\text{NH}_3(aq)][\text{OH}^-(aq)]}{[\text{N}_3^-(aq)]} = \frac{(x)(x)}{(0.200-x)} = \frac{x^2}{(0.200-x)} \)

\(K_b \) is small so the amount of \(\text{N}_3^- \) which is protonated is tiny and hence \(0.200 - x \approx 0.200 \).

Hence, \(\frac{x^2}{(0.200)} = 4.27 \times 10^{-10} \) or \(x = [\text{OH}^-(aq)] = 9.24 \times 10^{-6} \text{ M} \)

As \(pOH = -\log[\text{OH}^-(aq)] = -\log(9.24 \times 10^{-6}) = 5.03 \)

As \(\text{pH} + \text{pOH} = 14 \):

\[
\text{pH} = 14 - 5.03 = 8.97
\]

Answer: 8.97
Solution B (1.00 L) is poured into Solution A (1.00 L) and allowed to equilibrate at 25 °C to give Solution C. Calculate the pH of Solution C.

Solution C is a buffer system as it contains both a weak acid (HN_3) and its conjugate base (N_3^-(aq)). The pH can be obtained from the Henderson-Hasselbalch equation:

$$\text{pH} = \text{pK}_a + \log \frac{[A^- (aq)]}{[HA(aq)]}$$

Using pK_a = 4.63, [HA(aq)] = [HN_3(aq)] = 0.25 M and [A^-(aq)] = [N_3^-(aq)] = 0.200 M:

$$\text{pH} = (4.63) + \log \frac{0.200}{0.25} = 4.53$$

Answer: 4.53

If you wanted to adjust the pH of Solution C to be exactly equal to 4.00, which component in the mixture would you need to increase in concentration?

To lower the pH, the acid concentration (HN_3) is increased.
Calculate the pH of a 0.200 M solution of acetic acid, CH₃COOH, at 25 ºC. (The pKₐ of acetic acid is 4.76).

As acetic acid is a weak acid, [H₃O⁺] must be calculated:

<table>
<thead>
<tr>
<th></th>
<th>CH₃COOH</th>
<th>H₂O</th>
<th>→</th>
<th>H₃O⁺</th>
<th>CH₃COO⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.200</td>
<td>large</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>change</td>
<td>-x</td>
<td>negligible</td>
<td>+x</td>
<td>+x</td>
<td></td>
</tr>
<tr>
<td>final</td>
<td>0.200 – x</td>
<td>large</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

The equilibrium constant Kₐ is given by:

\[K_a = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]} = \frac{x^2}{0.2 - x} \]

As pKₐ = 4.76 = -log₁₀Kₐ so Kₐ = 10⁻⁴.76. As Kₐ is very small, 0.200 – x ~ 0.200 and hence:

\[x^2 = 0.200 \times 10^{-4.76} \]

or

\[x = 0.0019 \text{ M} = [H_3O^+] \]

Hence, the pH is given by:

\[pH = -\log_{10}[H_3O^+] = -\log_{10}[0.0019] = 2.73 \]

PH = 2.73

Solid sodium acetate, NaCH₃CO₂, (0.15 mol) was dissolved in 0.500 L of 0.200 M acetic acid and the volume made up to 750 mL with water. What is the pH of the resulting solution?

The solution contains a weak acid (acetic acid) and its conjugate base (acetate). 0.15 mol of acetate is present in 750 mL so its concentration is:

[base] = (0.15 mol) / (0.750 L) = 0.20 M

500 mL of 0.200 M acid contains (0.5 L) × (0.200 M) = 0.100 mol. The concentration of the acid in 750 mL is therefore:

[acid] = (0.100 mol) / (0.750 L) = 0.133 M

The Henderson-Hasselbalch equation can be used for this buffer:

\[pH = pK_a + \log_{10} \left(\frac{[\text{base}]}{[\text{acid}]} \right) = 4.76 + \log_{10} \left(\frac{0.20}{0.133} \right) = 4.94 \]

PH = 4.94

ANSWER CONTINUES ON THE NEXT PAGE
How much more NaCH₃CO₂ needs to be dissolved in the above solution to give a final pH of 5.00?

A pH of 5.00 will be obtained when:

$$\text{pH} = 4.76 + \log_{10}\left(\frac{[\text{base}]}{[\text{acid}]}\right) = 5.00 \text{ or } \log_{10}\left(\frac{[\text{base}]}{[\text{acid}]}\right) = 0.24$$

Hence,

$$\left(\frac{[\text{base}]}{[\text{acid}]}\right) = 10^{0.24} = 1.74 \text{ or } [\text{base}] = 1.74 \times [\text{acid}] = 1.74 \times 0.133 = 0.232 \text{ M}$$

The number of moles of base in 750 mL is therefore $(0.232 \text{ M}) \times (0.750 \text{ L}) = 0.174 \text{ mol}$.

As 0.15 mol was added originally, an additional $(0.17 - 0.15) = 0.02 \text{ mol}$ is required.

Answer: 0.02 mol
Regulation of our blood's pH value is of vital importance for our health. In a healthy person the blood pH does not vary by more than 0.2 from the average 7.4. How does our body regulate the pH of blood?

Blood maintains a constant pH by means of a H$_2$CO$_3$/HCO$_3^-$ buffer. It resists any change in pH because any excess H$^+$ or OH$^-$ is consumed as follows:

- **excess acid**: $H^+ + HCO_3^- \rightarrow H_2CO_3$
- **excess base**: $H_2CO_3 + OH^- \rightarrow HCO_3^- + H_2O$

During exercise, CO$_2$ is produced at a rapid rate in muscle tissue. What effect does this have on the pH of blood? Why?

The buffer is an equilibrium system:

$$H^+ + HCO_3^- \rightleftharpoons H_2CO_3$$

As more CO$_2$ is produced, it dissolves in the blood to increase the concentration of H$_2$CO$_3$. This in turn pushes the above equilibrium to the left and the [H$^+$] increases. The pH will therefore go down, but only slightly as the buffer system is highly effective.

Hyperventilation (rapid and deep breathing) can occur during intense exertion. What effect does hyperventilation have on the pH of blood? Why?

Hyperventilation results in a decrease in the amount of CO$_2$ in the blood. This pushes the $CO_2 + H_2O \rightleftharpoons H_2CO_3$ equilibrium to the left which in turn pushes the $H^+ + HCO_3^- \rightleftharpoons H_2CO_3$ equilibrium to the right to produce more H$_2$CO$_3$. The net effect is thus to lower [H$^+$] and cause a small increase in pH.

(The standard treatment for hyperventilation is to get the patient to breath into a paper bag and rebreathe the CO$_2$ they have exhaled.)