Marks • A solution is prepared that contains sodium chloride and sodium chromate (both 8 0.10 M). When a concentrated solution of silver nitrate is added slowly, white AgCl(s) begins to precipitate. After most of the Cl⁻(aq) has been consumed, red $Ag_2CrO_4(s)$ starts to precipitate. Ignoring dilution, what is the concentration of silver ions when silver chloride solid first starts to precipitate? K_{sp} (AgCl) is 1.8×10^{-10} . Answer: Ignoring dilution, what is the concentration of silver ions when silver chromate solid first starts to precipitate? $K_{\rm sp}$ (Ag₂CrO₄) is 3.6 × 10⁻¹². Answer: What is the concentration of chloride ions when silver chromate solid first starts to precipitate? Answer: What percentage of the chloride ion is precipitated before any silver chromate is precipitated? Answer:

Marks

9

• The salt calcium oxalate, $CaC_2O_4 \cdot H_2O_5$, is sparingly soluble. Write down the chemical equation for its dissolution in water and the expression for K_{sp} .

What is the molar solubility of calcium oxalate? $K_{\rm sp} = 2.3 \times 10^{-9}$

Answer:

If additional calcium oxalate is added to a saturated solution, what is the effect on $[Ca^{2+}(aq)]$?

Following blood donation, a solution of sodium oxalate is added to remove $Ca^{2+}(aq)$ ions which cause the blood to clot. The concentration of $Ca^{2+}(aq)$ ions in blood is 9.7×10^{-5} g mL⁻¹. If 100.0 mL of 0.1550 M Na₂C₂O₄ is added to 100.0 mL of blood, what will be the concentration (in mol L⁻¹) of Ca²⁺ ions remaining in the blood?

Answer:

•	The $K_{\rm sp}$ for Fe(OH) ₃ is 2.64 × 10 ⁻³⁹ . What is its molar solubility in water?	Marks 2
	Answer:	

• Give the equation for the dissolution of hydroxyapatite, $Ca_5(PO_4)_3(OH)$, in water.	Marks 2
What is the formula for the solubility product constant for hydroxyapatite?	_
	-

• What is the solubility of Cu(OH) ₂ in mol L ⁻¹ ? K_{sp} (Cu(OH) ₂) is 1.	$6 \times 10^{-19} \text{ at } 25 \text{ °C.}$ Marks 2
Answer:	

W	hat is the molarity of Ba ²⁺ ions in a sa	aturated aqueous solution of BaSO ₄ ?
		Answer:
W	That is the molar solubility of $BaSO_4$ in	n the presence of a 0.1 M solution of Na_2SO_4 ?
		Answer
Tł an E>	he lethal concentration of Ba ²⁺ in hum by advantage to administering BaSO ₄ is applain your reasoning.	nans is about 60 mg L ⁻¹ (4×10^{-4} M). Is there in the presence of 0.1 M Na ₂ SO ₄ solution?

• What is the solubility of scandium hydro Give your answer in g per 100 mL.	xide, Sc(OH) ₃ , ($K_{sp} = 2 \times 10^{-30}$) in water?	Marks 2
	Answer:	
• How does the interplay of Δ <i>H</i> and Δ <i>S</i> aff between solid and liquid water?	Fect the spontaneity of the phase change	4

- 4
- Following blood donation, a solution of sodium oxalate is added to remove Ca^{2+} ions (as calcium oxalate, CaC_2O_4 ·H₂O, $K_{sp} 2.3 \times 10^{-9}$), which cause the blood to clot. If the concentration of Ca^{2+} ions in blood is 9.7×10^{-5} g mL⁻¹, and 100.0 mL of 0.1550 M Na₂C₂O₄ is added to a 104 mL sample of blood, what will be the concentration (in mol L⁻¹) of Ca²⁺ ions remaining in the blood?

Answer:

• Calculate the molar solubility of lead bromide given that its solution constant, K_{sp} , is 2.1×10^{-6} .	ubility product M	larks 2
Answer:		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1102 2009-N-4 Marks • Write a balanced chemical equation representing the dissolution of FeCO₃ in water at 4 pH 7. Ignoring any hydrolysis of the ions, calculate the solubility (in g L^{-1}) of FeCO₃ in water at pH 7. The solubility product constant, K_{sp} , for FeCO₃ is 2.1×10^{-11} . Answer: • The concentration of iron in the ocean is one of the primary factors limiting the 4 growth rates of some basic life forms. The pH of the oceans before the Industrial Revolution was around 8.22. What was the maximum concentration of $Fe^{3+}(aq)$ in the ocean at this pH? The $K_{\rm sp}$ of Fe(OH)₃ is 1×10^{-39} . Answer:

Industrialisation has led to an increase in atmospheric CO₂. What effect has this had on the amount of $Fe^{3+}(aq)$ in sea water?

A solution is prepared that is 0.10 M in potassium bromide and 0.10 M in potassium chromate. A concentrated aqueous solution of silver nitrate is added with stirring. What is the concentration of $Ag^+(aq)$ ions when silver bromide first appears? K_{sp} of $AgBr = 5.0 \times 10^{-13}$	Marks 4
	_
Answer:	
What is the concentration of Ag ⁺ (aq) ions when silver chromate first appears? K_{sp} of Ag ₂ CrO ₄ = 2.6 × 10 ⁻¹²	
Answer:	
What is the concentration of Br ⁻ (aq) ions when silver chromate first appears?	
Answer:	1

The <i>K</i> _{sp} of Al(OH) ₃ is 1.0 × 10 ⁻³³ M ⁴ . What is the solubility of Al(OH) ₃ in g L ⁻¹ ? Answer: What is the solubility of Al(OH) ₃ in g L ⁻¹ at pH 4.00? Answer: Answer:	CHEM1102	2007-J-5	June 2007	22/06(a)
Answer: What is the solubility of Al(OH) ₃ in g L ⁻¹ at pH 4.00?	• The K_{sp} of Al(OH) ₃ i	s 1.0×10^{-33} M ⁴ . What is the solub	ility of Al(OH) ₃ in g L^{-1} ?	6
Answer: What is the solubility of Al(OH) ₃ in g L ⁻¹ at pH 4.00?				
Answer: What is the solubility of Al(OH) ₃ in g L ⁻¹ at pH 4.00?				
Answer: What is the solubility of Al(OH)3 in g L ⁻¹ at pH 4.00? Answer:				
Answer: What is the solubility of Al(OH)3 in g L ⁻¹ at pH 4.00? Answer:				
Answer: What is the solubility of Al(OH)3 in g L ⁻¹ at pH 4.00? Answer:				
Answer: What is the solubility of Al(OH) ₃ in g L ⁻¹ at pH 4.00? Answer:				
Answer: What is the solubility of Al(OH)3 in g L ⁻¹ at pH 4.00? Answer:				
Answer: What is the solubility of Al(OH)3 in g L ⁻¹ at pH 4.00? Answer:				
What is the solubility of Al(OH) ₃ in g L ⁻¹ at pH 4.00?		Answer:		
Answer:	What is the solubility	y of Al(OH) ₃ in g L^{-1} at pH 4.00?		
Answer:				
		Answer:		

Marks

4

• Barium sulfate is used as a contrast agent for X-ray images of intestines. What is the solubility product constant, K_{sp} , for BaSO₄, given that a maximum of 1.167×10^{-8} g will dissolve in 500 mL of water?

Answer:

What advantage would there be in administering $BaSO_4$ as a slurry that also contains 0.5 M Na_2SO_4 ?

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

•

Magnesium hydroxide, Mg(OH) ₂ , is used a Its solubility product constant, K_{sp} , is 7.1 × is in equilibrium with Mg(OH) ₂ (s).	as treatment for excess 10 ⁻¹² M ³ . Calculate th	acidity in the stomach. he pH of a solution that	Marks 4
	Answer:		
Determine whether 3.0 g of Mg(OH) ₂ will pH of 8.00.	dissolve in 1.0 L of a s	solution buffered to a	
		YES / NO	

• Oxalic acid, $H_2C_2O_4$, found in rhubarb, causes muscle spasms by precipitating Ca²⁺ ions from the blood as calcium oxalate, CaC₂O₄·H₂O. Given the solubility product constant for calcium oxalate is 2.3×10^{-9} M², calculate the concentration of calcium ions in g L⁻¹ formed by dissolving CaC₂O₄·H₂O in water at 25 °C to give a saturated solution.

Answer:

• Calcium oxalate is a major constituent of product constant for calcium oxalate give made by dissolving 0.0061 g of CaC ₂ O ₄ .	kidney stones. Calculate the solubility in that a saturated solution of the salt can be $H_2O(s)$ in 1.0 L of water.	Mark 2
	Answer:	_
• A sample of 2.0 mg of Cu(OH) ₂ is added 8.00. Will all of the Cu(OH) ₂ dissolve? (The K _{sp} of Cu(OH) ₂ is 4.8 × 10 ⁻²⁰ M ³ .)	to 1.0 L of a solution buffered at a pH of Show all working.	3
	Answer:	_

• Magnesium hydroxide, Mg(OH) ₂ , is used as treatment for excess acidity in the stomach. Calculate the pH of a solution that is in equilibrium with Mg(OH) ₂ . The solubility product constant, K_{sp} of Mg(OH) ₂ is 7.1×10^{-12} M ² .	Marks 6
ANSWER:	
Determine whether 2.0 g of Mg(OH) ₂ will dissolve in 1.0 L of a solution buffered to a pH of 7.00.	-

ANSWER: YES / NO

CHEM1102	2003-J-4	June 2003
• The solubility product of BaSO ₄ in g L^{-1} ?	constant of BaSO ₄ is $1.1 \times 10^{-10} \text{ M}^2$. Wh	hat is the solubility of $\frac{Marks}{3}$
	ANSWER:	
• The solubility product of solubility of Ag ₂ CrO ₄ in	constant of Ag ₂ CrO ₄ is 2.6×10^{-12} M ³ . V n water?	Vhat is the molar 5
	ANSWER:	
What is the molar solub	bility of Ag_2CrO_4 in a solution of 0.10 M	AgNO ₃ ?
	ANSWER:	