• Explain briefly why the $[Fe(H_2O)_6]^{3+}$ cation has a K_a of 6×10^{-3} , whilst the $[Fe(H_2O)_6]^{2+}$ cation has a K_a of 4×10^{-9} .

The Fe^{3+} ion is much smaller and has a much higher charge density than the Fe^{2+} ion. This results in a stronger Fe–O bond and a weakening of the O–H bonds. The high charge density on the Fe^{3+} ion pulls electron density from the attached OH_2 ligands. This leads to the release of $H^+(aq)$.

As the O–H bonds are weaker, it is more acidic: it has a much *greater* value for K_{a} .

Marks

4

• Write a balanced chemical equation representing the dissolution of FeCO₃ in water at pH 7.

 $FeCO_3(s) \rightarrow Fe^{2+}(aq) + CO_3^{2-}(aq)$

Ignoring any hydrolysis of the ions, calculate the solubility (in g L⁻¹) of FeCO₃ in water at pH 7. The solubility product constant, K_{sp} , for FeCO₃ is 2.1×10^{-11} .

From the equation above, $K_{sp} = [Fe^{2+}(aq)][CO_3^{2-}(aq)]$. If *s* mol of FeCO₃ dissolves in 1.0 L, $[Fe^{2+}(aq)] = [CO_3^{2-}(aq)] = s$ M. Hence:

 $K_{\rm sp} = [{\rm Fe}^{2+}({\rm aq})][{\rm CO_3}^{2-}({\rm aq})] = (s)(s) = s^2 = 2.1 \times 10^{-11} \text{ or } s = 4.6 \times 10^{-6} \text{ M}$

The formula mass of FeCO₃ is (55.85 (Fe) + 12.01 (C) + 3×16.00 (O)) g mol⁻¹ = 115.86 g mol⁻¹. From above, 4.6×10^{-6} mol of FeCO₃ dissolves in 1.0 L. This corresponds to:

 $\begin{array}{l} mass = number \ of \ moles \times formula \ mass \\ = (4.6 \times 10^{-6} \ mol) \times (115.86 \ g \ mol^{-1}) = 5.3 \times 10^{-4} \ g \end{array}$

This is the mass that dissolves in 1.0 L. The solubility is 5.3×10^{-4} g L⁻¹.

Answer: $5.3 \times 10^{-4} \text{ g L}^{-1}$

• The concentration of iron in the ocean is one of the primary factors limiting the growth rates of some basic life forms. The pH of the oceans before the Industrial Revolution was around 8.22. What was the maximum concentration of Fe³⁺(aq) in the ocean at this pH? The K_{sp} of Fe(OH)₃ is 1×10^{-39} .

As pH + pOH = 14.00, pOH = 14.00 - 8.22 = 5.78.

By definition, $pOH = -log_{10}[OH^{-}(aq)]$ and so $[OH^{-}(aq)] = 10^{-5.78}$.

Fe(OH)₃ dissolves according to the equilibrium:

Fe(OH)₃
$$\Longrightarrow$$
 Fe³⁺(aq) + 3OH⁻(aq) with $K_{sp} = [Fe^{3+}(aq)][OH-(aq)]^3$.

As $K_{\rm sp} = 1 \times 10^{-39}$ and $[OH^{-}(aq)] = 10^{-5.78}$:

 $[\mathrm{Fe}^{3+}(\mathrm{aq})] = K_{\mathrm{sp}} / [\mathrm{OH}^{-}(\mathrm{aq})]^{3} = (1 \times 10^{-39}) / (10^{-5.78})^{3} = 2 \times 10^{-22} \mathrm{M}$

Answer: 2×10^{-22} M

ANSWER CONTINUES ON THE NEXT PAGE

4

Industrialisation has led to an increase in atmospheric CO₂. What effect has this had on the amount of $Fe^{3+}(aq)$ in sea water?

CO₂ dissolves in water to give acidic solution that reacts with OH⁻ ions.

 $2OH^{-}(aq) + CO_{2}(aq) \rightarrow CO_{3}^{2-}(aq) + H_{2}O$

From Le Chatelier's principle, the decrease in $[OH^{-}(aq)]$ will result in an increase in $[Fe^{3+}(aq)]$.

Equivalently, if $[OH^{-}(aq)]$ is decreased, $[Fe^{3+}(aq)]$ must increase as K_{sp} is a constant.