• Explain briefly why the $[Fe(H_2O)_6]^{3+}$ cation has a K_a of 6×10^{-3} , whilst the $[Fe(H_2O)_6]^{2+}$ cation has a K_a of 4×10^{-9} .

CHEM1102 2009-N-4 Marks • Write a balanced chemical equation representing the dissolution of FeCO₃ in water at 4 pH 7. Ignoring any hydrolysis of the ions, calculate the solubility (in g L^{-1}) of FeCO₃ in water at pH 7. The solubility product constant, K_{sp} , for FeCO₃ is 2.1×10^{-11} . Answer: • The concentration of iron in the ocean is one of the primary factors limiting the 4 growth rates of some basic life forms. The pH of the oceans before the Industrial Revolution was around 8.22. What was the maximum concentration of $Fe^{3+}(aq)$ in the ocean at this pH? The $K_{\rm sp}$ of Fe(OH)₃ is 1×10^{-39} . Answer:

Industrialisation has led to an increase in atmospheric CO₂. What effect has this had on the amount of $Fe^{3+}(aq)$ in sea water?