CHEM1102 2014-J-2 June 2014

•	Compounds of d -block elements are frequently paramagnetic. Using the box notation to represent atomic orbitals, account for this property in compounds of Co^{2+} .	Marks 2

• Name the complex $[CoCl_2(en)_2]$. en = ethylenediamine = $NH_2CH_2CH_2NH_2$	Marks 4
Draw all possible isomers of this complex.	

Marks

• The structure below represents the active site in carbonic anhydrase, which features a Zn²⁺ ion bonded to 3 histidine residues and a water molecule.

$$\begin{array}{c|c}
 & OH_2 \\
 & Zn^{2+} \\
 & NH
\end{array}$$

$$\begin{array}{c|c}
 & NH \\
 & NH
\end{array}$$

The p K_a of uncoordinated water is 15.7, but the p K_a of the water ligand in carbonic anhydrase is around 7. Suggest an explanation for this large change.

When studying zinc-containing metalloenzymes, chemists often replace Zn ²⁺ with
Co ²⁺ . Using the box notation to represent atomic orbitals, work out how many
unpaired electrons are present in the Zn^{2+} and Co^{2+} ions.

Suggest why it is useful to replace Zn²⁺ with Co²⁺ when studying the nature of the active site in carbonic anhydrase.

Suggest two differences in the chemistry of Zn^{2+} and Co^{2+} ions that may affect the reactivity of the cobalt-containing enzyme.

• Use the information already provided to complete the following table. (ox = oxalate = $C_2O_4^{2-}$)

Marks 8

Formula	$\left[CrCl_2(NH_3)_4\right]^n$	[Fe(ox) ₃] ⁿ	$[ZnCl_2(NH_3)_2]^n$
Oxidation state of transition metal ion		+III	
Number of <i>d</i> -electrons in the transition metal ion			10
Number of unpaired <i>d</i> -electrons in the transition metal ion			
Charge of complex (i.e. n)	1+		
Is the metal atom paramagnetic?			

The complex $[PtCl_2(NH_3)_2]$ has two isomers, while its zinc analogue (in the table) exists in only one form. Using diagrams where appropriate, explain why this is so.

Formula	Geometry of complex	Ligand donor atom(s)
$\left[Zn(OH)_4\right]^{2-}$		
[CoCl(NH ₃) ₅]SO ₄		
K ₄ [Fe(CN) ₆]		
[Ag(CN) ₂] ⁻		
	x ion from the above table and state wheth ther. Explain your reasoning.	ner it is paramagnetic,

CHEM1102 2013-N-5 November 2013

•	Which of the following complexes is/are chiral? Explain your reasoning. Use diagrams where necessary.	Mark 3
	acetylacetonate ion = CH ₃ COCHCOCH ₃ ⁻	
	ethylenediamine = $NH_2CH_2CH_2NH_2$	
	tris(acetylacetonato)chromium(III)	
	trans-bis(ethylenediamine)difluoridochromium(III) chloride	
	acetylacetonatobis(ethylenediamine)chromium(III) iodide	

The overall formation constant for $[Cu(NH_3)_4]^{2^+}$ is 1.0×10^{13} . Write the equation for the reaction of Cu^{2^+} ions with excess ammonia solution. Calculate the value of the equilibrium constant for the following reaction. $Cu(OH)_2(s) + 4NH_3(aq) \implies [Cu(NH_3)_4]^{2^+}(aq) + 2OH^-(aq)$ Answer:	$(H_3)_4]^{2+}$ is 1.0×10^{13} . Write the equation for onia solution.
The overall formation constant for $[Cu(NH_3)_4]^{2^+}$ is 1.0×10^{13} . Write the equation for the reaction of Cu^{2^+} ions with excess ammonia solution. Calculate the value of the equilibrium constant for the following reaction. $Cu(OH)_2(s) + 4NH_3(aq) \implies [Cu(NH_3)_4]^{2^+}(aq) + 2OH^-(aq)$	$(H_3)_4]^{2+}$ is 1.0×10^{13} . Write the equation for onia solution.
The overall formation constant for $[Cu(NH_3)_4]^{2^+}$ is 1.0×10^{13} . Write the equation for the reaction of Cu^{2^+} ions with excess ammonia solution. Calculate the value of the equilibrium constant for the following reaction. $Cu(OH)_2(s) + 4NH_3(aq) \implies [Cu(NH_3)_4]^{2^+}(aq) + 2OH^-(aq)$	$(H_3)_4]^{2+}$ is 1.0×10^{13} . Write the equation for onia solution.
The overall formation constant for $[Cu(NH_3)_4]^{2^+}$ is 1.0×10^{13} . Write the equation for the reaction of Cu^{2^+} ions with excess ammonia solution. Calculate the value of the equilibrium constant for the following reaction. $Cu(OH)_2(s) + 4NH_3(aq) \implies [Cu(NH_3)_4]^{2^+}(aq) + 2OH^-(aq)$	$(H_3)_4]^{2+}$ is 1.0×10^{13} . Write the equation for onia solution.
The overall formation constant for $[Cu(NH_3)_4]^{2^+}$ is 1.0×10^{13} . Write the equation for the reaction of Cu^{2^+} ions with excess ammonia solution. Calculate the value of the equilibrium constant for the following reaction. $Cu(OH)_2(s) + 4NH_3(aq) \implies [Cu(NH_3)_4]^{2^+}(aq) + 2OH^-(aq)$	$(H_3)_4]^{2+}$ is 1.0×10^{13} . Write the equation for onia solution.
The overall formation constant for $[Cu(NH_3)_4]^{2^+}$ is 1.0×10^{13} . Write the equation for the reaction of Cu^{2^+} ions with excess ammonia solution. Calculate the value of the equilibrium constant for the following reaction. $Cu(OH)_2(s) + 4NH_3(aq) \implies [Cu(NH_3)_4]^{2^+}(aq) + 2OH^-(aq)$	$(H_3)_4]^{2+}$ is 1.0×10^{13} . Write the equation for onia solution.
$Cu(OH)_2(s) + 4NH_3(aq)$ \Longrightarrow $[Cu(NH_3)_4]^{2+}(aq) + 2OH^-(aq)$	
$Cu(OH)_2(s) + 4NH_3(aq)$ \Longrightarrow $[Cu(NH_3)_4]^{2+}(aq) + 2OH^-(aq)$	
	$= [Cu(NH_3)_4]^{2+}(aq) + 2OH^{-}(aq)$
Answer:	
Answer:	
	Answer:
Would you expect Cu(OH) ₂ (s) to dissolve in 1 M NH ₃ solution? Briefly explain your answer.	in 1 M NH ₃ solution? Briefly explain your

• Compounds of <i>d</i> -block elements are frequently paramagnetic. Using the box notation to represent atomic orbitals, account for this property in compounds of Cu ²⁺ .	2
• Provide a systematic name for the complex [NiBrCl(en)] and draw both of its possible structures. (en = NH ₂ CH ₂ CH ₂ NH ₂ = ethylenediamine = ethane-1,2-diamine)	4
Is either complex chiral? Explain your reasoning.	

• Complete the following table. (ox = oxalate = $C_2O_4^{2-}$)

Marks 6

Formula	Na[FeCl ₄]	[CrCN(NH ₃) ₅]Br ₂	$K_3[VO_2(ox)_2]\cdot 3H_2O$
Oxidation state of transition metal ion			
Coordination number of transition metal ion			
Number of <i>d</i> -electrons in the transition metal ion			
Species formed upon dissolving in water			

• The following three complex ions can all exhibit isomerism. Name the type of isomerism involved in each case and draw the structures of the isomeric pairs. $ox = oxalate = C_2O_4^{2-}$	Marks 9
$\left[\text{CrCl}_2(\text{NH}_3)_4\right]^+$	
$[Fe(ox)_3]^{3-}$	
$[Co(NH_3)_3(OH_2)_3]^{3+}$	
• Give the systematic name of each of the following compounds. en = ethylenediamine = 1,2-diaminoethane = NH ₂ CH ₂ CH ₂ NH ₂	3
Cs ₂ [PtF ₆]	
$[\text{Co}(\text{en})_2(\text{NH}_3)_2]\text{Br}_3$	

• Complete the following table.

 NCS^- = isothiocyanate ion

Marks 5

$$bipy = 2,2'\text{-}bipyridine = (C_5H_4N)_2 =$$

$py = 2,2$ '-bipyridine = $(C_5H_4N)_2$ =		<u>\</u>		,
---	--	----------	--	----------

Formula	$K_2[Zn(CN)_4]$	[Co(bipy)(NH ₃) ₄]Cl ₃	[Co(bipy) ₂ (NCS) ₂]
Oxidation state of transition metal ion			
Coordination number of transition metal ion			
Number of <i>d</i> -electrons in the transition metal ion			
Coordination geometry of the complex ion			
List all the ligand donor atoms			

•	Titanium has three common oxidation states, $+II$, $+III$ and $+IV$. Using the box notation to represent atomic orbitals, predict whether compounds of Ti^{2+} , Ti^{3+} and Ti^{4+} would be paramagnetic or diamagnetic.	2
•	Provide a systematic name for the complex $trans$ -[NiBr ₂ (en) ₂] and draw its structure. Is this complex chiral? Explain your reasoning.	4
	en = ethylenediamine = ethane-1,2-diamine	

• Complete the following table. (EDTA = ethylenediaminetetraacetate)

Marks 5

Formula	[Ni(NH ₃) ₆](NO ₃) ₂	trans-[PtCl ₂ (NH ₃) ₂]	Na[Fe(EDTA)]
Oxidation state of transition metal ion			
Coordination number of transition metal ion			
Number of <i>d</i> -electrons in the transition metal ion			
Coordination geometry of the complex ion			
List all the ligand donor atoms			

Page '	Γotal	l:

CHEM1102 2009-J-2 22/06(a)

• Compounds of <i>d</i> -block elements are frequently paramagnetic. Using the boto represent atomic orbitals, account for this property in compounds of Co^{2+}	
	·

• Complete the following table. (en = ethylenediamine = $NH_2CH_2CH_2NH_2$)

Marks 9

Formula	K ₂ [CoCl ₄]	Na ₃ [FeBr(CN) ₅]	$[Zn(en)_2(NO_3)_2]$
Oxidation state of transition metal ion			
Coordination number of transition metal ion			
Number of <i>d</i> -electrons in the transition metal ion			
Charge of the complex ion			
Geometry of the complex ion			
List all the ligand donor atoms			

• Explain why compounds of <i>d</i> -block elements are frequently paramagnetic. Use examples in your answer.	2
 Provide a systematic name for cis-[Co(en)₂Cl₂]Cl. Is this complex chiral? Explain your reasoning by drawing the structure of the complex. en = NH₂CH₂CH₂NH₂ = ethane-1,2-diamine = ethylenediamine 	3

CHEM1102 2009-N-6 22/08(a)

3

• Derive expressions for the equilibrium constants for the complexation of $Pb^{2+}(K_1)$ and of $Ca^{2+}(K_2)$ by $EDTA^{4-}$.
Briefly explain why the chelating agent, EDTA, is administered as $[Ca(EDTA)]^{2-}$ to treat lead poisoning and determine which of K_1 or K_2 must be greater for the therapy to be effective.

• Compounds of <i>d</i> -block elements are frequently paramagnetic. Using the box notation to represent atomic orbitals, explain why most Fe ²⁺ and Fe ³⁺ compounds are paramagnetic.	2

June 2008

22/06(a)

2008-J-2

CHEM1102

CHEM1102 2008-J-4 June 2008 22/06(a)

• Complete the following table. (en = ethylenediamine = $NH_2CH_2CH_2NH_2$)

Marks 9

Formula	(NH ₄) ₂ [CoCl ₄]	[Cr(NH ₃) ₅ (H ₂ O)]Cl ₃	cis-[PtCl ₂ (en) ₂]
Oxidation state of transition metal ion			
Coordination number of transition metal ion			
Number of <i>d</i> -electrons in the transition metal ion			
Charge of the complex ion			
Geometry of the complex ion			
List all the ligand donor atoms			

• Calculate the equilibrium constant for the following reaction.

$$AgI(s) + 2CN^{-}(aq)$$
 \longrightarrow $[Ag(CN)_2]^{-}(aq) + \Gamma(aq)$

Data:
$$K_{\text{stab}}$$
 of $[Ag(CN)_2]^- = 3 \times 10^{20}$; K_{sp} of $AgI = 8.3 \times 10^{-17}$

Answer:

CHEM1102 2008-N-4 November 2008 22/08(a)

•	Which of the cations, $[Fe(OH_2)_6]^{3+}$ and $[Fe(OH_2)_6]^{2+}$, has the larger p K_a ? Briefly explain why.	Mar 2
•	Consider the compound [CrCl(OH ₂) ₄ (NCS)]Cl·2H ₂ O.	3
	What is the oxidation state of the transition metal ion?	
	What is the coordination number of the transition metal ion?	
	How many <i>d</i> -electrons in the transition metal ion?	
	List all the ligand donor atoms.	
•	Consider the complexes <i>cis</i> -[PtCl ₂ (NH ₃) ₂] and <i>trans</i> -[PtCl ₂ (NH ₃) ₂]. Draw the structures of the two isomers, clearly illustrating the stereochemistry.	3
	Briefly suggest why cis -[PtCl ₂ (NH ₃) ₂] is an effective anti-cancer drug, but $trans$ -[PtCl ₂ (NH ₃) ₂] is not.	

CHEM1102 2007-J-2 June 2007 22/06(a)

• Compounds of d -block elements are frequently paramagnetic. Using the box notation to represent atomic orbitals, account for this property in compounds of V^{3+} .	n 1

CHEM1102 2007-J-3 June 2007 22/06(a)

• Complete the following table. (en = ethylenediamine = $NH_2CH_2CH_2NH_2$)

Marks 3

Formula	$K_3[Fe(CN)_6]$	$[Cu(NH_3)_4(H_2O)_2](NO_3)_2$	cis-[CrCl ₂ (en) ₂]Cl
Oxidation state of transition metal ion			
Coordination number of transition metal ion			
Number of <i>d</i> -electrons in the transition metal ion			
Species formed upon dissolving in water			

•	What is a chelate ligand?	Ma 4
	Draw all possible isomers of $[CoCl_2(en)_2]$. en = ethylenediamine = $NH_2CH_2CH_2NH_2$	
•	Explain briefly why the $[\text{Fe}(\text{H}_2\text{O})_6]^{3+}$ cation has a K_a of 6×10^{-3} M, whilst the $[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$ cation has a K_a of 4×10^{-9} M.	2

Marks 3

• Hemochromatosis or "iron overload" is a potentially fatal disorder in which excess iron is deposited in the bodily organs as insoluble hydrated iron(III) oxide. It can be treated by administration of desferioxamine B (*Desferal*), a natural substance isolated from fungi.

Desferal is taken over 8-12 hour periods up to six times per week. A value of $\log K = 30.6$ is associated with the following equilibrium:

$$Fe^{3+} + LH_3^+ \longrightarrow FeL^+ + 3H^+$$
 where $LH_3^+ = Desferal$

Briefly describe the chemical basis for the use of *Desferal* in iron overload therapy.

CHEM1102	2006-J-5	June 2006

•	Consider the compound with formula [CoCl ₂ (NH ₃) ₄]Br·2H ₂ O.			
	Write the formula of the complex ion.			
	Write the symbols of the ligand donor atoms.			
	What is the d electron configuration of the metal ion in this complex?			

Compounds of <i>d</i> -blo to represent atomic of	ock elements a orbitals, accou	are frequently parent for this proper	amagnetic. U ty in compour	sing the box notation ands of Cu ²⁺ .
Complete the follow	ing table.			
Formula	Oxidation state of transition	Coordination number of transition	Number of d- electrons in the	Species formed upon dissolving in water

 $en = ethylenediamine = NH_2CH_2CH_2NH_2 \\$

 $Na_2[CoCl_4]$

 $[Ni(NH_3)_5(H_2O)]SO_4 \\$

 $[Cr(en)_3]Br_3$