CHEM1102	2014-J-2	June 2014

Briefly explain how a catalyst works.	Mark 2

• Given the following experimental data, find the rate law and the rate constant for the following reaction:

Marks 3

$$NO(g) + NO_2(g) + O_2(g) \rightarrow N_2O_5(g)$$

Run	[NO(g)] / M	$[NO_2(g)]/M$	$\left[\mathrm{O}_{2}(\mathrm{g})\right] /\mathrm{M}$	Rate / M s ⁻¹
1	0.10	0.10	0.10	2.1×10^{-2}
2	0.20	0.10	0.10	4.2×10^{-2}
3	0.20	0.30	0.20	1.26×10^{-1}
4	0.10	0.10	0.20	2.1×10^{-2}

Rate =	k =
--------	-----

• The rate constant for a reaction is 5.0×10^{-3} s⁻¹ at 215 °C and 1.2×10^{-1} s⁻¹ at 452 °C. What is the activation energy of the reaction in kJ mol⁻¹?

3

Answer:

What is the rate constant for this reaction at 100 °C?

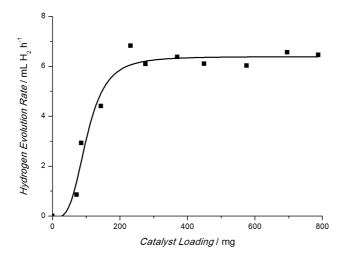
Answer:

•	The following data were obtained for the iodide-catalysed decomposition of
	hydrogen peroxide, H ₂ O ₂ .

Experiment	[I ⁻](M)	$[H_2O_2](M)$	Initial rate(M s ⁻¹)
1	0.375	0	0
2	0.375	0.235	0.000324
3	0.375	0.470	0.000657
4	0.375	0.705	0.001024
5	0.375	0.940	0.001487
6	0	0.948	0
7	0.050	0.948	0.00045
8	0.100	0.948	0.00095
9	0.150	0.948	0.00140
10	0.200	0.948	0.00193

Determine the rate law from these data.

Use the data from Experiment 10 to calculate the rate constant for this reaction.


k =

Iodide ion is used as a catalyst in this reaction. What is the role of a catalyst in a chemical reaction?

• When irradiated with visible light, CdS can catalyse the production of H₂ from water.

$$H_2O$$
 + light \underline{CdS} H_2 + $\frac{1}{2}O_2$

The rate of H₂ production from 80 mL of water at constant illumination varies with the amount of catalyst present (*i.e.* CdS loading) as shown below.

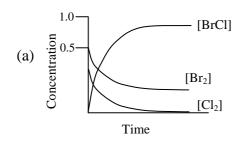
Why does the rate of H₂ production as a function of catalyst loading plateau?

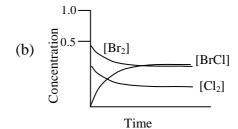
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

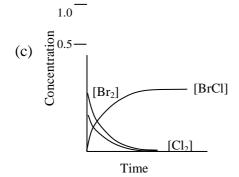
Marks 2 • Consider the reaction $A(g) + B(g) + C(g) \rightarrow D(g)$ for which the following data were obtained at 25 °C.

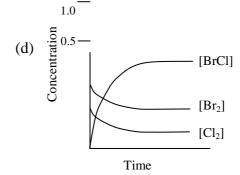
Marks 3

Experiment	Initial [A] (mol L ⁻¹)	Initial [B] $(\text{mol } L^{-1})$	Initial [C] (mol L ⁻¹)	Initial rate (mol L ⁻¹ s ⁻¹)
1	0.0500	0.0500	0.1000	6.25×10^{-3}
2	0.1000	0.0500	0.1000	1.25×10^{-2}
3	0.1000	0.1000	0.1000	5.00×10^{-2}
4	0.0500	0.0500	0.2000	6.25×10^{-3}


Write the rate law and calculate the value of the rate constant.


THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.


• In the reaction of Cl₂ with Br₂ in CCl₄ solution, BrCl forms according to the equation:


$$Br_2 + Cl_2 \rightarrow 2BrCl$$
 $K_c = 2$

With initial concentrations of $[Br_2] = 0.6 \text{ M}$, $[Cl_2] = 0.4 \text{ M}$ and [BrCl] = 0.0 M, which of the following concentration versus time graphs represents this reaction? Explain qualitatively why you rejected each of the other three graphs.

Marks 4 • Hydrogenation of NO to N_2 and water is a potential means of reducing smog-forming NO_x gases:

$$2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$$

The initial rates of this reaction at constant temperature were determined at the following combination of initial pressures (P_0).

Experiment	P_0 H ₂ (kPa)	P ₀ NO (kPa)	Rate (kPa s ⁻¹)
1	53.3	40.0	0.137
2	53.3	20.3	0.033
3	38.5	53.3	0.213
4	19.6	53.3	0.105

What is the order of the reaction? Show all working.

	Answer:
What is the value of the rate constant?	
	Answer:
	1

• The following reaction is run from 4 different starting positions.

Marks

6

$$H_2SeO_3~+~6I^-~+~4H^+~\rightarrow~Se~+~2{I_3}^-~+~3H_2O$$

Experiment Number	Initial [H ₂ SeO ₃] (mol L ⁻¹)	Initial $[I^-]$ (mol L^{-1})	Initial [H ⁺] (mol L ⁻¹)	Initial rate of increase of [I ₃ ⁻] (mol L ⁻¹ s ⁻¹)
1	0.100	0.100	0.100	1.000
2	0.100	0.075	0.100	0.422
3	0.075	0.100	0.100	0.750
4	0.100	0.075	0.075	0.237

				(,
1	0.100	0.100	0.100	1.000
2	0.100	0.075	0.100	0.422
3	0.075	0.100	0.100	0.750
4	0.100	0.075	0.075	0.237
Determine	the rate law for the	e reaction.	·	
Rate law:				
Rate law.				
Calculate	the value of the rate	e constant.		
		Ar	iswer:	

Marks

3

• Peroxydisulfate and iodide ions react according to the following equation.

 $S_2O_8{}^{2-}(aq) \ + \ 3\Gamma(aq) \ \to \ 2SO_4{}^{2-}(aq) \ + \ I_3{}^-(aq)$

The following rate data were collected at room temperature.

Experiment	$[S_2O_8^{2-}(aq)]_0(M)$	$[\Gamma(aq)]_0(M)$	Initial rate (mol L ⁻¹ s ⁻¹)
1	0.080	0.034	2.2×10^{-4}
2	0.080	0.017	1.1×10^{-4}
3	0.160	0.017	2.2×10^{-4}

3	0.100	0.017	2.2×10
Determine	the rate law for the reac	ction.	
Calculate th	ne value of the rate con	stant at room temperat	ure
	te variae of the face con	stant at 100m temperat	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Answer:

22/06(a)

• Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water according to the following equation.

 $2NO(g) \ + \ H_2(g) \ \to \ N_2O(g) \ + \ H_2O(g)$

The following rate data were collected at 225 $^{\circ}$ C.

Experiment	[NO] ₀ (M)	$[H_2]_0(M)$	Initial rate (d[NO]/dt, M s ⁻¹)
1	6.4×10^{-3}	2.2×10^{-3}	2.6×10^{-5}
2	1.3×10^{-2}	2.2×10^{-3}	1.0×10^{-4}
3	6.4×10^{-3}	4.4×10^{-3}	5.1×10^{-5}

Experiment	$[NO]_0(M)$	H_{2}	$ _{0}\left(\mathbf{M}\right)$	Initial rate (d[NO]/dt, M s ⁻¹)		
1	6.4×10^{-3}	2.2	× 10 ⁻³	2.6×10^{-5}		
2	1.3×10^{-2}	2.2	× 10 ⁻³	1.0×10^{-4}		
3	6.4×10^{-3}	4.4	$\times 10^{-3}$	5.1×10^{-5}		
Determine t	Determine the rate law for the reaction.					
Calculate th	ne value of the rate cons	stant at 22	5 °C.			
			Answer:			
Calculate th	ne rate of appearance of	f N ₂ O whe	en [NO] =	$[H_2] = 6.6 \times 10^{-3} \text{ M}.$		
			Answer:			
		.a .:		1.6.61.41		
Suggest a p Explain you		the reacti	on based c	on the form of the rate law.		

Marks 2

• The following data were obtained for the reaction between gaseous nitric oxide and chlorine at -10 °C:

$$2NO(g) \,+\, Cl_2(g) \,\rightarrow\, 2NOCl(g)$$

Experiment Number	Initial P _{NO} (atm)	Initial P _{Cl2} (atm)	Initial Reaction Rate (atm s ⁻¹)
1	2.16	2.16	0.065
2	2.16	4.32	0.130
3	4.32	4.32	0.518

Derive an expression for the rate	law for this reaction	and calculate the	value of the
rate constant.			

_		•		
к	ate	-12	XX	•

Rate constant:

THIS QUESTION CONTINUES ON THE NEXT PAGE

CHEM1102	2008-N-9	November 2008	22/08(a
The mechanism for t	his reaction has been postulate	ed to be that below.	Marks 4
2NO(g) \longrightarrow N ₂ O ₂ (g)	fast	•
$N_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_$	$(g) + Cl_2 \rightarrow 2NOCl(g)$	slow	
	w expected for this mechanism xperimental rate law and the c		
	nermic. Draw the potential end labelling all species that can be	ergy vs reaction coordinate diagram e isolated.	

• The following data were obtained for the reaction between gaseous nitric oxide and chlorine at -10 °C.

Marks 4

$$2NO(g) \, + \, Cl_2(g) \, \rightarrow \, 2NOCl(g)$$

Experiment Number	Initial [NO] (mol L ⁻¹)	Initial [Cl ₂] (mol L ⁻¹)	Initial Reaction Rate (mol L ⁻¹ min ⁻¹)
1	0.10	0.10	0.18
2	0.10	0.20	0.36
3	0.20	0.20	1.44

Deduce the rate law for this reaction and calculate the value of the rate constant.

RATE LAW	RATE CONSTANT
Answer:	Answer:

• Hydrogenation of nitric oxide to nitrogen and water is a potential means of reducing smog-forming NO_x gases:

Marks 3

$$2NO(g) \ + \ 2H_2(g) \ \to \ N_2(g) \ + \ 2H_2O(g)$$

The initial rates of this reaction at constant temperature were determined at the following combination of initial pressures (P_0).

Run	P_0 (H ₂) / kPa	P_0 (NO) / kPa	Rate / kPa s ⁻¹
1	53.3	40.0	0.137
2	53.3	20.3	0.033
3	38.5	53.3	0.213
4	19.6	53.3	0.105

Derive an expression for the rate law for this reaction.

Answer:		
Allswei.		
Calculate the value of the rate const	tant	
Calculate the value of the face cons	tant.	
	_	
		Answer:
		Answer:

CHEM1102 2006-J-3 June 2006

Briefly describe two factors that determine whether a collision between two molecules will lead to a chemical reaction.	1

$$2NO_2(g) \ + \ O_3(g) \ \to \ N_2O_5(g) \ + \ O_2(g)$$

[NO ₂ (g)] M	[O ₃ (g)] M	Rate M s ⁻¹
0.65	0.80	2.61×10^4
1.10	0.80	4.40×10^4
1.10	1.60	8.80×10^{4}

What is the order of this reaction with respect to each reagent?

What is the rate constant of the reaction?	
	Answer: