| CHEM1102 | 2014-J-2 | June 2014 | |----------|----------|-----------| | | | | | Briefly explain how a catalyst works. | Mark
2 | |---------------------------------------|-----------| | | | | | | | | | | | | | | | • Given the following experimental data, find the rate law and the rate constant for the following reaction: Marks 3 $$NO(g) + NO_2(g) + O_2(g) \rightarrow N_2O_5(g)$$ | Run | [NO(g)] / M | $[NO_2(g)]/M$ | $\left[\mathrm{O}_{2}(\mathrm{g})\right] /\mathrm{M}$ | Rate / M s ⁻¹ | |-----|-------------|---------------|--|--------------------------| | 1 | 0.10 | 0.10 | 0.10 | 2.1×10^{-2} | | 2 | 0.20 | 0.10 | 0.10 | 4.2×10^{-2} | | 3 | 0.20 | 0.30 | 0.20 | 1.26×10^{-1} | | 4 | 0.10 | 0.10 | 0.20 | 2.1×10^{-2} | | Rate = | k = | |--------|-----| |--------|-----| • The rate constant for a reaction is 5.0×10^{-3} s⁻¹ at 215 °C and 1.2×10^{-1} s⁻¹ at 452 °C. What is the activation energy of the reaction in kJ mol⁻¹? 3 Answer: What is the rate constant for this reaction at 100 °C? Answer: | • | The following data were obtained for the iodide-catalysed decomposition of | |---|--| | | hydrogen peroxide, H ₂ O ₂ . | | Experiment | [I ⁻](M) | $[H_2O_2](M)$ | Initial rate(M s ⁻¹) | |------------|----------------------|---------------|----------------------------------| | 1 | 0.375 | 0 | 0 | | 2 | 0.375 | 0.235 | 0.000324 | | 3 | 0.375 | 0.470 | 0.000657 | | 4 | 0.375 | 0.705 | 0.001024 | | 5 | 0.375 | 0.940 | 0.001487 | | 6 | 0 | 0.948 | 0 | | 7 | 0.050 | 0.948 | 0.00045 | | 8 | 0.100 | 0.948 | 0.00095 | | 9 | 0.150 | 0.948 | 0.00140 | | 10 | 0.200 | 0.948 | 0.00193 | Determine the rate law from these data. Use the data from Experiment 10 to calculate the rate constant for this reaction. k = Iodide ion is used as a catalyst in this reaction. What is the role of a catalyst in a chemical reaction? • When irradiated with visible light, CdS can catalyse the production of H₂ from water. $$H_2O$$ + light \underline{CdS} H_2 + $\frac{1}{2}O_2$ The rate of H₂ production from 80 mL of water at constant illumination varies with the amount of catalyst present (*i.e.* CdS loading) as shown below. Why does the rate of H₂ production as a function of catalyst loading plateau? THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY. Marks 2 • Consider the reaction $A(g) + B(g) + C(g) \rightarrow D(g)$ for which the following data were obtained at 25 °C. Marks 3 | Experiment | Initial [A]
(mol L ⁻¹) | Initial [B] $(\text{mol } L^{-1})$ | Initial [C] (mol L ⁻¹) | Initial rate (mol L ⁻¹ s ⁻¹) | |------------|---------------------------------------|------------------------------------|------------------------------------|---| | 1 | 0.0500 | 0.0500 | 0.1000 | 6.25×10^{-3} | | 2 | 0.1000 | 0.0500 | 0.1000 | 1.25×10^{-2} | | 3 | 0.1000 | 0.1000 | 0.1000 | 5.00×10^{-2} | | 4 | 0.0500 | 0.0500 | 0.2000 | 6.25×10^{-3} | Write the rate law and calculate the value of the rate constant. THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY. • In the reaction of Cl₂ with Br₂ in CCl₄ solution, BrCl forms according to the equation: $$Br_2 + Cl_2 \rightarrow 2BrCl$$ $K_c = 2$ With initial concentrations of $[Br_2] = 0.6 \text{ M}$, $[Cl_2] = 0.4 \text{ M}$ and [BrCl] = 0.0 M, which of the following concentration versus time graphs represents this reaction? Explain qualitatively why you rejected each of the other three graphs. Marks 4 • Hydrogenation of NO to N_2 and water is a potential means of reducing smog-forming NO_x gases: $$2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$$ The initial rates of this reaction at constant temperature were determined at the following combination of initial pressures (P_0). | Experiment | P_0 H ₂ (kPa) | P ₀ NO (kPa) | Rate (kPa s ⁻¹) | |------------|----------------------------|-------------------------|-----------------------------| | 1 | 53.3 | 40.0 | 0.137 | | 2 | 53.3 | 20.3 | 0.033 | | 3 | 38.5 | 53.3 | 0.213 | | 4 | 19.6 | 53.3 | 0.105 | What is the order of the reaction? Show all working. | | Answer: | |---|---------| | What is the value of the rate constant? | | | | | | | | | | | | | | | | Answer: | | | 1 | • The following reaction is run from 4 different starting positions. Marks 6 $$H_2SeO_3~+~6I^-~+~4H^+~\rightarrow~Se~+~2{I_3}^-~+~3H_2O$$ | Experiment
Number | Initial [H ₂ SeO ₃] (mol L ⁻¹) | Initial $[I^-]$ (mol L^{-1}) | Initial [H ⁺]
(mol L ⁻¹) | Initial rate of increase of [I ₃ ⁻] (mol L ⁻¹ s ⁻¹) | |----------------------|---|---------------------------------|---|---| | 1 | 0.100 | 0.100 | 0.100 | 1.000 | | 2 | 0.100 | 0.075 | 0.100 | 0.422 | | 3 | 0.075 | 0.100 | 0.100 | 0.750 | | 4 | 0.100 | 0.075 | 0.075 | 0.237 | | | | | | (, | |-----------|-----------------------|-------------|--------|-------| | 1 | 0.100 | 0.100 | 0.100 | 1.000 | | 2 | 0.100 | 0.075 | 0.100 | 0.422 | | 3 | 0.075 | 0.100 | 0.100 | 0.750 | | 4 | 0.100 | 0.075 | 0.075 | 0.237 | | Determine | the rate law for the | e reaction. | · | Rate law: | | | | | | Rate law. | | | | | | Calculate | the value of the rate | e constant. | Ar | iswer: | | Marks 3 • Peroxydisulfate and iodide ions react according to the following equation. $S_2O_8{}^{2-}(aq) \ + \ 3\Gamma(aq) \ \to \ 2SO_4{}^{2-}(aq) \ + \ I_3{}^-(aq)$ The following rate data were collected at room temperature. | Experiment | $[S_2O_8^{2-}(aq)]_0(M)$ | $[\Gamma(aq)]_0(M)$ | Initial rate (mol L ⁻¹ s ⁻¹) | |------------|--------------------------|---------------------|---| | 1 | 0.080 | 0.034 | 2.2×10^{-4} | | 2 | 0.080 | 0.017 | 1.1×10^{-4} | | 3 | 0.160 | 0.017 | 2.2×10^{-4} | | 3 | 0.100 | 0.017 | 2.2×10 | |--------------|---------------------------|------------------------|-----------------| | Determine | the rate law for the reac | ction. | Calculate th | ne value of the rate con | stant at room temperat | ure | | | te variae of the face con | stant at 100m temperat | THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY. Answer: 22/06(a) • Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water according to the following equation. $2NO(g) \ + \ H_2(g) \ \to \ N_2O(g) \ + \ H_2O(g)$ The following rate data were collected at 225 $^{\circ}$ C. | Experiment | [NO] ₀ (M) | $[H_2]_0(M)$ | Initial rate (d[NO]/dt, M s ⁻¹) | |------------|-----------------------|----------------------|---| | 1 | 6.4×10^{-3} | 2.2×10^{-3} | 2.6×10^{-5} | | 2 | 1.3×10^{-2} | 2.2×10^{-3} | 1.0×10^{-4} | | 3 | 6.4×10^{-3} | 4.4×10^{-3} | 5.1×10^{-5} | | Experiment | $[NO]_0(M)$ | H_{2} | $ _{0}\left(\mathbf{M}\right)$ | Initial rate (d[NO]/dt, M s ⁻¹) | | | |----------------------------|--|------------------------|---------------------------------|---|--|--| | 1 | 6.4×10^{-3} | 2.2 | × 10 ⁻³ | 2.6×10^{-5} | | | | 2 | 1.3×10^{-2} | 2.2 | × 10 ⁻³ | 1.0×10^{-4} | | | | 3 | 6.4×10^{-3} | 4.4 | $\times 10^{-3}$ | 5.1×10^{-5} | | | | Determine t | Determine the rate law for the reaction. | Calculate th | ne value of the rate cons | stant at 22 | 5 °C. | Answer: | | | | | Calculate th | ne rate of appearance of | f N ₂ O whe | en [NO] = | $[H_2] = 6.6 \times 10^{-3} \text{ M}.$ | Answer: | | | | | | | .a .: | | 1.6.61.41 | | | | Suggest a p
Explain you | | the reacti | on based c | on the form of the rate law. | Marks 2 • The following data were obtained for the reaction between gaseous nitric oxide and chlorine at -10 °C: $$2NO(g) \,+\, Cl_2(g) \,\rightarrow\, 2NOCl(g)$$ | Experiment
Number | Initial P _{NO} (atm) | Initial P _{Cl2} (atm) | Initial Reaction Rate (atm s ⁻¹) | |----------------------|-------------------------------|--------------------------------|--| | 1 | 2.16 | 2.16 | 0.065 | | 2 | 2.16 | 4.32 | 0.130 | | 3 | 4.32 | 4.32 | 0.518 | | Derive an expression for the rate | law for this reaction | and calculate the | value of the | |-----------------------------------|-----------------------|-------------------|--------------| | rate constant. | | | | | _ | | • | | | |---|-----|-----|----|---| | к | ate | -12 | XX | • | Rate constant: THIS QUESTION CONTINUES ON THE NEXT PAGE | CHEM1102 | 2008-N-9 | November 2008 | 22/08(a | |---|---|---|------------| | The mechanism for t | his reaction has been postulate | ed to be that below. | Marks
4 | | 2NO(| g) \longrightarrow N ₂ O ₂ (g) | fast | • | | $N_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_$ | $(g) + Cl_2 \rightarrow 2NOCl(g)$ | slow | | | | w expected for this mechanism xperimental rate law and the c | nermic. Draw the potential end
labelling all species that can be | ergy vs reaction coordinate diagram e isolated. | | | | | | | • The following data were obtained for the reaction between gaseous nitric oxide and chlorine at -10 °C. Marks 4 $$2NO(g) \, + \, Cl_2(g) \, \rightarrow \, 2NOCl(g)$$ | Experiment
Number | Initial [NO]
(mol L ⁻¹) | Initial [Cl ₂]
(mol L ⁻¹) | Initial Reaction Rate (mol L ⁻¹ min ⁻¹) | |----------------------|--|--|--| | 1 | 0.10 | 0.10 | 0.18 | | 2 | 0.10 | 0.20 | 0.36 | | 3 | 0.20 | 0.20 | 1.44 | Deduce the rate law for this reaction and calculate the value of the rate constant. | RATE LAW | RATE CONSTANT | |----------|---------------| Answer: | Answer: | • Hydrogenation of nitric oxide to nitrogen and water is a potential means of reducing smog-forming NO_x gases: Marks 3 $$2NO(g) \ + \ 2H_2(g) \ \to \ N_2(g) \ + \ 2H_2O(g)$$ The initial rates of this reaction at constant temperature were determined at the following combination of initial pressures (P_0). | Run | P_0 (H ₂) / kPa | P_0 (NO) / kPa | Rate / kPa s ⁻¹ | |-----|-------------------------------|------------------|----------------------------| | 1 | 53.3 | 40.0 | 0.137 | | 2 | 53.3 | 20.3 | 0.033 | | 3 | 38.5 | 53.3 | 0.213 | | 4 | 19.6 | 53.3 | 0.105 | Derive an expression for the rate law for this reaction. | Answer: | | | |---------------------------------------|-------|---------| | Allswei. | | | | Calculate the value of the rate const | tant | | | Calculate the value of the face cons | tant. | _ | | | | | | | | | Answer: | | | | Answer: | CHEM1102 2006-J-3 June 2006 | Briefly describe two factors that determine whether a collision between two molecules will lead to a chemical reaction. | 1 | |---|---| | | | | | | | | | | | | $$2NO_2(g) \ + \ O_3(g) \ \to \ N_2O_5(g) \ + \ O_2(g)$$ | [NO ₂ (g)] M | [O ₃ (g)] M | Rate M s ⁻¹ | |-------------------------|------------------------|------------------------| | 0.65 | 0.80 | 2.61×10^4 | | 1.10 | 0.80 | 4.40×10^4 | | 1.10 | 1.60 | 8.80×10^{4} | What is the order of this reaction with respect to each reagent? | What is the rate constant of the reaction? | | |--|---------| Answer: |