CHEM1102	2014-J-2	June 2014

Briefly explain how a catalyst works.	Mark 2

•	The following data were obtained for the iodide-catalysed decomposition of
	hydrogen peroxide, H ₂ O ₂ .

Experiment	[I ⁻](M)	$[H_2O_2](M)$	Initial rate(M s ⁻¹)
1	0.375	0	0
2	0.375	0.235	0.000324
3	0.375	0.470	0.000657
4	0.375	0.705	0.001024
5	0.375	0.940	0.001487
6	0	0.948	0
7	0.050	0.948	0.00045
8	0.100	0.948	0.00095
9	0.150	0.948	0.00140
10	0.200	0.948	0.00193

Determine the rate law from these data.

Use the data from Experiment 10 to calculate the rate constant for this reaction.

k =

Iodide ion is used as a catalyst in this reaction. What is the role of a catalyst in a chemical reaction?

CHEM1102	2008-N-9	November 2008	22/08(a
The mechan	ism for this reaction has been postulated	to be that below.	Marks 4
	$2NO(g) \iff N_2O_2(g)$	fast	4
	$N_2O_2(g) + Cl_2 \rightarrow 2NOCl(g)$	slow	
	e rate law expected for this mechanism are rith the experimental rate law and the che		
	n is exothermic. Draw the potential energy thanism, labelling all species that can be is		

CHEM1102 2006-J-3 June 2006

Briefly describe two factors that determine whether a collision between two molecules will lead to a chemical reaction.	1