- Consider the following equation.

Marks

Name all of the species in this equation.

Complete the following table by giving the correct $\mathrm{p} K_{\mathrm{a}}$ or $\mathrm{p} K_{\mathrm{b}}$ value where it can be calculated. Mark with a cross (\boldsymbol{x}) those cells for which insufficient data have been given to calculate a value.

Species	HBrO	NH_{3}	BrO^{-}	$\mathrm{NH}_{4}{ }^{+}$
$\mathrm{p} K_{\mathrm{a}}$ of acid	8.64			
$\mathrm{p} K_{\mathrm{b}}$ of base		4.76		

Determine on which side (left or right hand side) the equilibrium for the reaction above will lie. Provide a brief rationale for your answer.

