2

Name the two intermolecular forces, which best explain the difference in boiling points of 1-propanol (CH₃CH₂CH₂OH; bp = 97.2 °C) and 1-propanethiol (CH₃CH₂CH₂SH; bp = 67.8 °C).

H-bonding is dominant and strong in CH₃CH₂CH₂OH due to the electronegativity of oxygen. The lower electronegativity of sulfur ensures that H-bonding is quite weak in CH₃CH₂CH₂SH and weaker dipole-dipole interactions are probably more important.

The alkyl chain in both will interact via dispersion forces, but these are likely to be similar in both systems.

- 3
- Consider the boiling points of the compounds 1-propanol, 1-propanethiol and 1-propaneselenol shown in the table below?

Compound	CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ SH	CH ₃ CH ₂ CH ₂ SeH
Boiling point (° C)	97.2	67.8	147.0

With reference to intermolecular forces, explain briefly why the boiling points increase in the order $CH_3CH_2CH_2SH < CH_3CH_2CH_2OH < CH_3CH_2CH_2SeH$.

Polarisability of atoms increases as the size of the atoms increase. The greater the polarisability, the stronger the dispersion forces. On this basis, the expected boiling point order would be $C_3H_7OH < C_3H_7SH < C_3H_7SeH$.

 C_3H_7OH also has hydrogen bonding between the OH groups. H-bonding is a stronger intermolecular force than dispersion forces and this increases the boiling point of C_3H_7OH to be above that of C_3H_7SH . The effect is not enough to push it above the boiling point of C_3H_7SH .

• Hydrogen bond strength increases in the order N-H::::N < O-H::::O < F-H::::F. Use this information and the data given in the table to explain the differences in boiling point of ammonia, water and hydrogen fluoride.

Compound	NH ₃	H ₂ O	HF
Boiling point / °C	-33	100	20

NH₃ and HF both have two H-bond per molecule and their boiling points are in the expected order - HF has the stronger H-bonds and the higher boiling point.

 H_2O has 4 H-bonds per molecule, so although the bonds are not as strong as those of HF, there are twice as many of them. As a result the boiling point of H_2O is greater than that of HF.