- Assume that NaCl is the only significant solute in seawater. A 1.000 L sample of seawater at $25^{\circ} \mathrm{C}$ and 1 atm has a mass of 1.0275 kg and contains 33.0 g of NaCl . At what temperature would this seawater freeze? The freezing point depression constant of water is $1.86^{\circ} \mathrm{C} \mathrm{kg} \mathrm{mol}^{-1}$.

The formula mass of $\mathbf{N a C l}$ is $22.99(\mathrm{Na})+35.45(\mathrm{Cl})=58.44$. Therefore, 33.0 g corresponds to:

$$
\text { number of moles of } \mathrm{NaCl}=\frac{\text { mass }}{\text { formula mass }}=\frac{33.0}{58.44}=0.565 \mathrm{~mol}
$$

As each mole of NaCl dissolves to give 2 moles of particles ($\mathrm{Na}^{+}(\mathbf{a q})$ and $\mathrm{Cl}^{-}(\mathrm{aq})$), the number of moles of solute is $\mathbf{2 \times 0 . 5 6 5}=\mathbf{1 . 1 2 9} \mathbf{~ m o l}$.

If salt water contains only water and NaCl ,

$$
\text { mass of water }=1.0275-0.0330=0.995 \mathrm{~kg}
$$

Hence, the molality is

$$
\mathrm{m}=\frac{\text { moles of solute }}{\text { mass of solvent }}=\frac{1.129}{0.995}=1.136 \mathrm{~mol} \mathrm{~kg}^{-1}
$$

The freezing point depression is then:

$$
\Delta T_{f}=K_{f} m=1.86 \times 1.136=2.11^{\circ} \mathrm{C}
$$

As water normally freezes at $0^{\circ} \mathrm{C}$, this saltwater will freeze at $\mathbf{- 2 . 1 1}{ }^{\circ} \mathrm{C}$.

The vapour pressure above pure $\mathrm{H}_{2} \mathrm{O}$ is 23.76 mmHg at $25^{\circ} \mathrm{C}$ and 1 atm . Calculate the vapour pressure above this seawater under the same conditions.

The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $(2 \times 1.008(\mathrm{H}))+16.00(\mathrm{O})=18.016$. Therefore, $\mathbf{0 . 9 9 5}$ kg of water corresponds to

$$
\text { moles of water }=\frac{\text { mass }}{\text { molar mass }}=\frac{\left(0.995 \times 10^{3}\right)}{18.016}=55.3 \mathrm{~mol}
$$

As $1.129 \mathbf{~ m o l}$ of solute is also present, the mole fraction, \mathbf{X}, of water is

$$
X_{\text {water }}=\frac{\text { number of moles of water }}{\text { total number of moles }}=\frac{55.3}{(55.3+1.129)}=0.980
$$

From Raoult's law,

$$
P_{\text {water }}=X_{\text {water }} P_{\text {water }}{ }^{0}=0.980 \times 23.76=23.3 \mathrm{mmHg}
$$

Answer: $\mathbf{2 3 . 3} \mathbf{~ m m H g}$

The desalination of seawater by reverse osmosis has been suggested as a way of alleviating water shortages in Sydney. What pressure (in Pa) would need to be applied to this seawater in order to force it through a semi-permeable membrane, yielding pure $\mathrm{H}_{2} \mathrm{O}$?

The concentration of solute is:

$$
\text { concentration }=\mathrm{c}=\frac{\text { number of moles of solute }}{\text { volume }}=\frac{1.129}{1.000}=1.129 \mathrm{M}
$$

The osmotic pressure, Π, required is given by

$$
\Pi=\text { cRT }=(1.129) \times(0.08206) \times(25+273)=27.6 \mathrm{~atm}
$$

As $1 \mathbf{~ a t m}=101.3 \times 10^{3} \mathrm{~Pa}$,

$$
\Pi=27.6 \times\left(101.3 \times 10^{3}\right)=2800000 \mathrm{~Pa}=2.80 \times 10^{6} \mathrm{~Pa}
$$

Answer: $\mathbf{2 . 8 0} \times \mathbf{1 0}^{\mathbf{6}} \mathbf{~ P a}$

