Marks

5

• Phosgene is a toxic gas prepared by the reaction of carbon monoxide with chlorine:

$$CO(g) + Cl_2(g) \rightarrow COCl_2(g)$$

The following data were obtained in a kinetics study of its formation at 150 °C.

Experiment	initial [CO] (M)	initial [Cl ₂] (M)	Initial rate (M s^{-1})
1	1.00	0.100	$1.29 imes 10^{-29}$
2	0.100	0.100	1.33×10^{-30}
3	0.100	1.00	1.30×10^{-29}
4	0.100	0.0100	1.32×10^{-31}

Determine the rate law for the reaction.

Between experiments (1) and (2), $[Cl_2]_{initial}$ is kept constant and $[CO]_{initial}$ is reduced by a factor of 10. The rate decreases by a factor of $\frac{1.29 \times 10^{-29}}{1.33 \times 10^{-30}} \sim 10$.

Hence the reaction is first order with respect to CO.

Between experiments (1) and (3), $[Cl_2]$ is increased by a factor of 10 and $[CO]_{initial}$ is decreased by a factor of 10. The rate does not change. As this change in $[CO]_{initial}$ is known from above to increase the rate by a factor of 10, the change in $[Cl_2]_{initial}$ must be decreasing the rate by a factor of 10. Hence, the reaction is also first order with respect to Cl_2 .

Hence, overall, rate = *k*[CO][Cl₂]

Calculate the value of the rate constant at 150 °C.

Using experiment (1), when [CO] = 1.00 M and $[Cl_2] = 0.100$ M, the rate is 1.29×10^{-29} M s⁻¹. Hence from the rate law:

$$1.29 \times 10^{-29} \text{ M s}^{-1} = k \times (1.00 \text{ M}) \times (0.100 \text{ M})$$
$$k = \frac{1.29 \times 10^{-29} \text{ M s}^{-1}}{(1.00 \text{ M}) \times (0.100 \text{ M})} = 1.29 \times 10^{-28} \text{ M}^{-1} \text{ s}^{-1}$$
Answer: 1.29 ×

Calculate the rate of appearance of phosgene when $[CO] = [Cl_2] = 1.3$ M.

rate =
$$k$$
[CO][Cl₂] = (1.29 × 10⁻²⁸ M⁻¹ s⁻¹)×(1.3 M)×(1.3 M) = 2.2 × 10⁻²⁸ M s⁻¹

Answer: $2.2 \times 10^{-28} \text{ M s}^{-1}$

10⁻²⁸ M⁻¹ s⁻¹